搜索资源列表
A-hybrid
- 针对传统的BP或GA对模糊神经网络的识别应用存在收敛容易陷入局部极小 识别率低下等问题 提出一 种基于BFGS的混合遗传算法 其基本思想为 首先构造一种前馈型模糊神经网络结构 然后用遗传算法进化若干代 后 当目标函数的梯度或者范数小于预先设定值 则改用BFGS算法进行优化识别 仿真实验表明 对比GA该算法 收敛速度较快 识别精度提高了约7% 能够较好地应用于一类模糊神经网络的识别-In traditional BP or GA to identify the application
yichuansuanfa
- 遗传算法(Genetic Algorithm,GA)是通过对自然界中生物的遗传和优胜劣汰的进化过程进行模拟与抽象,进而形成的一种自适应全局随机优化搜索方法。遗传算法只需提供目标函数作为寻优信息,它从某一随机生成的初始群体出发,经过选择、交叉和变异等遗传操作后对个体进行适应度评价,保留适应度较强的个体遗传到子代种群中,经过多次的迭代计算求得最优个体,即问题的最优解。本程序采用遗传算法可求解微网优化运行。-Genetic Algorithm is an adaptive global by natu
简单函数优化的遗传算法程序
- 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。(Genetic algorithm (GA) is a random search and optimization method based on biological natural selection and genetic mechanism.)