搜索资源列表
non-Gaussian-noise-Identification
- 该文提出一种基于广义分数阶傅里叶变换和分数低阶Wigner-Ville 分布的数字调制识别新方法,该方法提取广义分数阶傅里叶变换的零 中心归一化瞬时幅度谱密度的最大值和分数低阶Wigner-Ville 分布幅度的最大值作为识别特征参数,并采用判决树分类器,实现了非高斯噪声下数字调制信号识别。-This paper presents a generalized fractional Fourier transform and fractional lower order Wigner-Vill
ggmle
- Matlab implementation of the moment matching and maximum likelihood estimators for the generalized Gaussian density.