搜索资源列表
Research_0n_Speech_Cepstral_Features
- 该文在研究基于线性预测倒谱和非线性MEL刻度倒谱特征的基础上,研究了LPCC和MFCC参数提取的算法原理及提取算法,提出了一级、二级差分倒谱特征参数的提取算法。识别实验验证了MFCC参数的鲁棒性优于LPCC参数。-In this paper, research is based on linear prediction and nonlinear MEL Cepstrum Cepstrum scale, based on studies of LPCC and MFCC parameter ex
Abdul_Syafiq_Abdull_Sukor
- the document explains speech recognition using mel frequency cpstrum coeefficient and noise reduction method
mel-frequency!
- Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques
Frequency-Cepstral-
- 基于Mel频率倒谱系数和遗传算法的煤矸界面识别研究-Recognition of gangue interface Mel Frequency Cepstral Coefficients and Genetic Algorithm
mfcc
- 在语音辨识(Speech Recognition)和语者辨识(Speaker Recognition)方面,最常用到的语音特征就是「梅尔倒频谱系数」(Mel-scale Frequency Cepstral Coefficients,简称MFCC),此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音辨识。
4413sipij08_2
- FEATURE EXTRACTION USING MFCC:Mel Frequency Ceptral Coefficient is a very common and efficient technique for signal processing. This paper presents a new purpose of working with MFCC by using it for Hand gesture recognition. The objective of usin
20P_ISOLATED
- This paper describes an approach of isolated speech recognition by using the Mel-Scale Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW). Several features are extracted speech signal of spoken words. An experimental of total f