搜索资源列表
SIFT
- 根据OPENCV给出的SIFT特征提取源代码所写的SIFT算法流程,对理解SIFT算法有一定的帮助
基于图像SIFT 特征的图像检索方法
- 基于SIFT特征提取,本文提出了一种多尺度的图像检索算法,将一幅图像转化为多个特征的集合,再通过计算两幅图像特征向量间的欧氏距离进行比较得出结果进而实现图像检索功能。实验结果说明该算法具有尺度、平移、旋转不变性,可以进行良好应用。
sift2
- 提出了一种基于线特征和SIFT点特征的多源遥感影像配准方法。该方法首先匹配待配准影像和参 考影像中的线特征,利用匹配直线构建虚拟角点 其次,针对传统SIFT算法匹配多源遥感影像特征点存在的 不足,采用线特征约束点特征的方法进行SIFT同名点对的提取 最后结合虚拟角点对及SIFT同名点对构建三角网进行小面元微分纠正。 -A line-based features and SIFT features multi-point sources of remote sensing image
SIFT3
- :对传统SIFT算法从特征点提取时间和匹配精度上进行了优化,基于优化算法提取的特征点对构建 三角网进行小面元微分纠正配准。试验结果表明,该方法是一种有效的遥感影像自动配准方法。 -: SIFT algorithm from the traditional feature extraction time and matching accuracy, and the optimization, optimization algorithm based on the extracted fea
sift4
- :提出一种基于尺度不变特征变换(SIFT)特征匹配的目标跟踪方法.首先使用SIFT提取目标特征,构 建目标特征库,然后使用基于K维树的特征匹配算法,对实时序列图像提取的SIFT特征与特征库中目标进行精确匹配 -: Based on Scale Invariant Feature Transform (SIFT) feature matching target tracking. The first to use SIFT target feature extraction, featur
sift5
- :研究了一种多目标识别算法,该算法用SUSAN角点形成SIFT特征点,采用阶梯图像金字塔结构实现尺度不变,为所有匹配点建立统一的超定线性方程组并对该方程组系数矩阵进行简 化使其维数降低一半,得到增广矩阵.对增广矩阵进行列变换,依据坐标转换的特性可从中提取多目标的稳定正常点,实现了快速分离多目标的匹配点. -: Study of a multi-target recognition algorithm using SUSAN corner formed SIFT feature point
sift
- SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。-sift of
err
- SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。-sift of
sift
- sift尺度不变特征,特征提取相关较好论文-The sift scale invariant features, feature extraction better paper
sift
- matlab 提取图像的sift源代码,编程简单精炼。-The matlab sift the source code to extract the image, programming is simple and refined.
SIFT-3D
- 基于SIFT特征提取_数字条纹投影的自适应3D人脸识别-Self-Adaptive 3D Face Recognition Using SIFT Extraction Based on Digital Fringe Projection
Multi-quantifying-SIFT
- 图像特征提取:多元量化 SIFT 视觉特征提取方法 -Image feature extraction
SIFT
- SIFT算法,基于特征的特征点提取及基于置信度的特征匹配-SIFT algorithm, feature-based feature extraction and matching based on the characteristics of Confidence
matlab
- 适用于SIFT图像特征提取、K-means生成聚类、SVM图像分类-Image feature extraction, generation clustering, image classification
image-matching--
- 首先对图像 进行高斯和 Wallis 滤波处理,然后采用简化 SIFT 算法进行特征点提取,最后通过特征点双向 匹配方法实现图像的精确匹配。通过对缺陷版图图像的试验验证了该方法具有匹配点数量 多、准确率高、无重复点等优点。-First of all Gaussian image filtering and Wallis and simplified SIFT feature point extraction algorithm, and finally through the fea
image-feature
- 把 SIFT 算法应用在牙齿模型图像上,检测牙齿图像的特征点。 方法:首先采用高斯差分算子 DoG 搜索整个图 像的尺度和位置信息,从而确定具有代表性尺度、方向的特征点。基于其稳定性选择关键点,得到一个详细的模型以确定每个候 选点的合适位置和范围。基于局部图像梯度方向信息将方向矢量和关键点对应起来。在选定范围内的每个关键点周边区域测量 局部图像梯度,并采用 KNN 算法进行特征匹配。 结果:通过大量的实验和与其他特征提取方法相比较,该方法能有效地检测牙 齿模型图像的特征,并为牙齿
sift-based-on-edge-corner
- SIFT 由特征提取,特征描述符描述和特征匹配 3 部分构成,该算子特征提取数目庞大,建立特征描述符运算 量高,导致算法效率低。提出了一种 SEC( SIFT-Edge-Corner) 算法,在图像尺度空间提取角点代替 SIFT 特征点,并根 据角点是边缘曲率极值理论,预先采用 Canny 算子得到高斯边缘图像金字塔,再提取角点并进行尺度选择。实验结 果表明: 该算法在保障高准确率的前提下大幅度提高特征提取效率-By the SIFT feature extraction, fea
Matching-Algorithm
- 要:图像匹配是计算机视觉中许多领域的基础,特征提取则是图像匹配的基础,其中不变量特征是一 个重要的理论。SIFt是最有效的尺度、旋转、亮度不变量局部特征之一,但算法复杂、计算时间长。分析 了SIFt的计算时间分配,通过计算关键点的邻域梯度直方图时动态修改采样步长,大大提高了SWr的 计算速度。分析了基于SIFt特征的图像匹配算法,提出了双向匹配算法,提高了图像匹配的准确率。实 验结果表明所提出的方法是有效的-Scale invariant feature transform(SI
sift_research
- 详细描述了SIFT提取特征算子的步骤。参考自原文档。很好的ppt-A full descr iption SIFT descr iptor.Refer original doc.Good PPT.
SIFT
- SIFT是由UBC(university of British Column)的教授David Lowe 于1999年提出, 并在2004年得以完善的一种检测图像关键点(key points , 或者称为图像的interest points(兴趣点) ), 并对关键点提取其局部尺度不变特征的描绘子, 采用这个描绘子进行用于对两幅相关的图像进行匹配(matching)。 目前, SIFT可以说是所有图像局部特征描述特征子 中最火的一个了。-SIFT was developed by David L