搜索资源列表
imagemosic
- 针对基于图像特征点的配准方法中对应特征对难以准确提取的问题,提出一种基于兴趣 点匹配的图像自动拼接方法。该方法首先利用Harris角检测器提取两幅图像中的兴趣点,并在此基 础上采用比较最大值法提取出对应兴趣点特征对,最后利用这些匹配特征对来实现图像的拼接。实 验结果表明,这种方法能有效地去除伪匹配特征对的干扰,同时降低了误匹配的概率-Feature points for image-based registration method of the corresponding char
cornerdetect
- 图像中的角点包含大量的信息,在计算机视觉中扮演重要角色,在许多应用中角点用作特征点,例如图像配准、运动目标跟踪等。鉴于此,学者们提出很多角点检测方法。例如Hans EMoravec在1977年提出的Movavec算法,Chris Harris和Mike Stephens于1988年提出的Harris算法,以及MirosavTrai.kovic和MarkHedley提出的Trajkovic算法等“卅。角点检测的另一个途径是计算轮廓的曲率函数,因为角点是曲率函数的最大值,因此很容易通过阈值的方法检测
harris--feature-extraction
- 图像中角点(特征点)提取与匹配算法.,通过harris焦点检测来实现特征的提取-Extraction and matching algorithms of image corners (feature points), harris focus detection to the feature extraction
SAR-image-registration
- matching algorithm based on SIFT algorithm, extract feature points in use of Harris corner detection algorithm-matching algorithm based on SIFT algorithm, extract feature points in use of Harris corner detection algorithm
matching
- 本文主要致力于图像配准和拼接算法的研究,一方面以Harris算法为基础,提出了一种基于圆形邻域增强的角点配准算法,而另一方面则根据图像配准精度需求及庞大图像规模,将图像的拼接算法改进,提出基于尺度不变特征一种的图像拼接算法。-The thesis focuses on image registration and stitching algorithm, on the one hand to the Harris algorithm, proposed corner registration a