搜索资源列表
Animprovedfastfeaturematchingalgorithmsift
- 一种改进的快速sift特征匹配算法,对学习sift算法很有帮助-An improved fast feature matching algorithm sift
image-matching-
- 针对 128 维 SIFT 特 征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率 . 实验结 果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果 . 与原算法相比,在保 证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低 10%~20% , 对于小尺度的视角变换,误匹配率平均降低 5%. -For 128-dimensi
sift-based-on-edge-corner
- SIFT 由特征提取,特征描述符描述和特征匹配 3 部分构成,该算子特征提取数目庞大,建立特征描述符运算 量高,导致算法效率低。提出了一种 SEC( SIFT-Edge-Corner) 算法,在图像尺度空间提取角点代替 SIFT 特征点,并根 据角点是边缘曲率极值理论,预先采用 Canny 算子得到高斯边缘图像金字塔,再提取角点并进行尺度选择。实验结 果表明: 该算法在保障高准确率的前提下大幅度提高特征提取效率-By the SIFT feature extraction, fea
quanjingtu
- 采用sift算法的全景图拼接技术的改进,讲解的很详细。如果pdf打不开,就用CAJvieweru-Improved algorithm using sift panorama stitching techniques, explain in great detail. If pdf open, use CAJvieweru
Matching-Algorithm
- 要:图像匹配是计算机视觉中许多领域的基础,特征提取则是图像匹配的基础,其中不变量特征是一 个重要的理论。SIFt是最有效的尺度、旋转、亮度不变量局部特征之一,但算法复杂、计算时间长。分析 了SIFt的计算时间分配,通过计算关键点的邻域梯度直方图时动态修改采样步长,大大提高了SWr的 计算速度。分析了基于SIFt特征的图像匹配算法,提出了双向匹配算法,提高了图像匹配的准确率。实 验结果表明所提出的方法是有效的-Scale invariant feature transform(SI
PCA-SIFT
- 用pca-sift实现特征匹配,是sift算法的改进,可直接使用-Achieved with pca-sift feature matching is improved sift algorithm can be used directly
surf-xiangjie
- SURF是SIFT算法的改进算,速度快,这里是详解请看。-SURF is improved SIFT algorithm, fast speed, this is, please see.
based-on
- 提出改进的SIFT算法,该算法可提高运算速度和匹配准确率,增强算法的鲁棒性。-Improved SIFT proposed algorithm can improve the computational speed and matching accuracy, enhance the robustness of the algorithm.