搜索资源列表
-
1下载:
朴素贝叶斯(Naive Bayes, NB)算法是机器学习领域中常用的一种基于概率的分类算法,非常简单有效。k近邻法(k-Nearest Neighbor, kNN)[30,31]又称为基于实例(Example-based, Instance-bases)的算法,其基本思想相当直观:Rocchio法来源于信息检索系统,后来最早由Hull在1994年应用于分类[74],从那以后,Rocchio方法就在文本分类中广泛应用起来。
-
-
0下载:
It is a matlab code for K Nearest Neighbor algorithm.
-
-
0下载:
its about imporvment of KNN algorithm
-
-
0下载:
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,讲解详细,非常有用-From K neighbor algorithm and distance measurement when it comes to KD tree, SIFT+ BBF algorithm, explain in detail, very useful
-
-
0下载:
机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
-
-
0下载:
基于PCA特征提取和距离哈希K近邻分布的人脸表情识别-PCA-based feature extraction and distribution of K-nearest neighbor distance hash Facial Expression Recognition
-
-
0下载:
支持偏好调控的路网隐私保护k近邻查询方法-Preference network support privacy regulation k nearest neighbor query methods
-
-
5下载:
《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文
-
-
0下载:
模糊k近邻的经典理论之作,很详细,大家可以下载(A Fuzzy K-Nearest Neighbor Algorithm)
-