搜索资源列表
OnTrackingofMovingObjects
- 学位论文;运动物体跟踪方法主要包括卡尔曼滤波,Mean-shift,Camshifi算法,粒子滤波器,Snake模型等;应用卡尔曼滤波方法设计了一套煤矿矿工出入自动监测系统;提出了一种新的基于高斯混合模型的颜色特征提取方法,该方法克服了现有的Camshift算法Continuousl y Adaptive eanshift中跟踪目标特征提取精确度低和计算复杂度高的缺陷-Dissertation moving object tracking methods include Kalman filt
KernelBasedObjectTracking
- A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel.
mean-shift-and-KALMAN-filter
- mean shift结合卡尔曼预测器 目标跟踪-mean shift and KALMAN filter
optical-flow-navigation
- 针对小型无人机在无卫星导航信号条件下的导航问题, 结合光流及地标定位设计了使用摄像头、惯性测量器件、超声测距仪等传感器融合的无人机室内导航方法. 文章使用补偿角速率的光流微分法计算帧间像素点小位移, 并用前后误差算法提取精度较高的点, 避免像素点跟踪错误, 提高了光流测速的精度 对得到的光流场用均值漂移算法进行寻优, 得到光流场直方图峰值, 以此计算光流速度. 本文提出了无累积误差的连续地标定位算法, 实时测量无人机位置. 通过多速率卡尔曼滤波器对观测周期不一致的位置、速度信息进行最优估计. 在