搜索资源列表
OnTrackingofMovingObjects
- 学位论文;运动物体跟踪方法主要包括卡尔曼滤波,Mean-shift,Camshifi算法,粒子滤波器,Snake模型等;应用卡尔曼滤波方法设计了一套煤矿矿工出入自动监测系统;提出了一种新的基于高斯混合模型的颜色特征提取方法,该方法克服了现有的Camshift算法Continuousl y Adaptive eanshift中跟踪目标特征提取精确度低和计算复杂度高的缺陷-Dissertation moving object tracking methods include Kalman filt
An-Introduction-to-the-Kalman-Filter
- the first introduction to Kalman Filter, methods that used to track moving object
Multiple-Pedestrian-Tracking-using-Colour-and-Mot
- This paper presents a method that combines colour and motion information to track pedestrians in video sequences captured by a fixed camera. Pedestrians are firstly detected using the human detector proposed by Dalal and Triggs which involves com
tracking
- 关于Kalman滤波的跟踪 相关文章 单目标和多目标-Single objective and multi-goal of the Kalman filter to track articles
Moving-Object-Detection-and-Tracking
- extracting background Bit-layer-A method of achieving background is presented which detect the moving object with statistics from complex scene. Compared with other methods of achieving image background, this approach can achieve and update s
0999
- 卡尔曼滤波是一种数据处理方法,它是一种线性最小方差无偏估计准则,基于系统 状态估计和当前观测,通过引入状态空间而获得的新的状态估计.本篇论文陈述了卡尔曼滤 波的基本思路和算法;并通过仿真,显示卡尔曼滤波的功能,以及如何用它来跟踪方向确定、速度恒定的飞行器。-Kalman filter is a data processing method, which is a linear minimum variance unbiased estimation criteria, based on
Kalman-filtering
- 用Kalman滤波方法估计目标航迹的Matlab源程序-Kalman filtering method using the estimated target track of Matlab source
Understanding-the-Basis-of-the-Kalman-Filter
- This document represent the kalman filter which can track the moving object. it is proofed that this filter is optimal in the case of gaussianity.
kalman-track
- 文中提出了一种基于kalman 预测和自适应模板的目标相关跟踪算法。通过kalman 预测下一帧图像中目标的 状态,缩小整个图像上目标检测的搜索范围,满足目标跟踪的实时性。采取自适应模板更新策略,根据目标的变化情 况自动调节参考模板,提高目标跟踪的稳定性。仿真实验结果表明,算法能够随着目标的形状、大小、位置的变化快速 调整参考模板,进行稳定和实时的跟踪,当目标被物体遮挡时仍能有效地跟踪目标。-A correlation-based tracking algorithm based o
kalman filter matlab
- 系统介绍卡尔曼滤波,扩展卡尔曼滤波,无迹卡尔曼滤波。(Introducing Calman filter, extended Calman filter, and no track Calman filter.)