搜索资源列表
KPCAandSVM
- KPCA与SVM共同用于人脸识别 SVM提高了分类效果 KPCA是一种借鉴SVM中核函数的一种较好的特征提取方法-KPCA and SVM for face recognition SVM together to improve the classification results from KPCA is a kernel function in SVM a better feature extraction method
KernelBasedObjectTracking
- A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel.
Linux_kernel_debug
- 调试是软件开发过程中一个必不可少的环节,在 Linux 内核开发的过程中也不可避免地会面对如何调试内核的问题。-Debugging is the process of software development is an indispensable link in the Linux kernel development process will inevitably face the issue of how to debug the kernel.
SRF
- In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. With the weights of the trained neural networks there are created kernel window
Kernel-Fisherfaces
- 人脸识别经典文献,介绍特征脸的核方法,核判别分析(KFDA)-Face classic literature, describes the characteristics of the face method, kernel discriminant analysis (KFDA)
classification
- 它是混合核函数方面的,对于分类的研究有很好的帮助的作用。而且是关于人脸识别的。-It is a hybrid kernel function aspects of the study of the role of classification good help. And about face recognition.
KFDA
- 研究基于步态的身份识别技术,并在步态特征提取和身份识 别等方面做了一些简单的尝试和探索。本文提出了一种基于核函数的Fisher判别分析(KFDA)进行步态识别.-In training process,we use kernel-based Fisher Discrimination Analysis(KFDA) method to train the input sample vectors.The method has been used in face recognition an