搜索资源列表
NFPSS
- These set of programs are written to design a robust power system stabilizer for minimizing the effects of low frequency oscillations in electric power systems. A complete nonlinear model of the power system represented by a single machine connected
Wind-power-prediction-problem
- 利用新陈代谢灰色预测、样本自适应BP 神经网络和时间序列分析分别进行风电功率实时预测和日前预测,并采用熵值取权法确定组合权重,引入自控机制,构建反馈,提出组合预测法和基于时间序列的卡尔曼滤波法。研究结果表明,组合预测模型能减少各预测点较大误差的出现,而卡尔曼滤波能大幅消减原始序列的波动影响。-Use of metabolic gray forecast, sample adaptive BP neural network and time sequence analysis respective
CCPP-based-on-BP-net
- 基于BP神经网络对联合循环发电厂每小时满负荷电功率进行建模。-BP neural network based on a combined cycle power plant of electric power per hour at full load modeling.