搜索资源列表
CRC
- 本文提出一种通用的CRC 并行计算原理及实现方法,适于不同的CRC 生成多项式和不同并行度(如8 位、16 位、及32 位等) ,与目前已采用的查表法比较,不需要存放余数表的高速存储器,减少了时延,且可通过增加并 行度来降低高速数传系统的CRC 运算时钟频率.-In this paper, a universal principle of CRC and implementation of parallel computing methods for generating differ
crc16
- Calculate CRC-8 Values. Uses The CCITT-8 Polynomial, Expressed As X^8 + X^5 + X^4 + 1 -Calculate CRC-8 Values. Uses The CCITT-8 Polynomial, Expressed As X^8+ X^5+ X^4+ 1
CRC.txt
- 用查表法计算CRC码 C的程序设计,生成多项式为CRC-CCITT -CRC look-up table method using C programming code, generating polynomial for the CRC-CCITT
Cyclic-Redundancy-Code-(CRC)-Polynomial-Selection
- Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks
CRC-encoder
- 奇偶校验码作为一种检错码虽然简单,但是漏检率太高。在计算机网络和数据通信中用E得最广泛的检错码,是一种漏检率低得多也便于实现的循环冗余码CRC (Cyclic Redundancy .Code),CRC码又称为多项式码。-Parity error detection code as a simple, but the missing rate is too high. In computer networking and data communications using the most wi
CRC_calibration_polynomial
- CRC国际通用校验多项式,excel文档-CRC internationally accepted calibration polynomial, excel documents
vb_crc_ccitt_
- CRC-16 校验有多种模式,上位端的必须与下位机一致。实际上,需要确定的就是多项式是初始值。-Check a variety of modes, the upper end must need to determine is the polynomial is the initial value, and the next crew.
A-Fast-CRC-Implementation-on-FPGA
- 快速实现crc polynom fpga使用流水线架构-A Fast CRC Implementation on FPGA Using a Pipelined Architecture for the Polynomial Division
crc16
- 信息交换内容为文本文件;通信信息交换通过共享文件实现编码要求:用模 2 除法计算 CRC 码,生成多项式为 CRC-16 能在两台计算机机上运行程序,一台产生 CRC 码,另一台校验。-Clearing the contents of a text file communications exchange achieved through shared document coding requirements: CRC code calculated by modulo-2 division,
Cyclic-Redundancy-Check
- CRC即循环冗余校验码(Cyclic Redundancy Check[1] ):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。-CRC is the most commonly used in the field of data communication error check code, which