搜索资源列表
classification
- 在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。分类器是对每一个输入模式赋予一个类别名称的软件或硬件装置,而贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。-In a model under the condition of complete statistical knowledge, in accordance with the Bayesian decision theory to design an optimal c
ADPF
- 基于统计决策规则提出自适应采样数粒子滤波算法, 在定义综合性能风险函数的基础, 推导出粒子数与滤波误差方差之间的关系式, 使得在跟踪过程中, 可以根据目标的机动情况在线调节粒子数, 以使跟踪性能 达到最优。在Matlab仿真平台下进行了闪烁噪声下的机动目标跟踪实验, 结果表明, 自适应采样数粒子滤波算法是一种有效的机动目标跟踪方法, 跟踪性能较基本粒子滤波算法提高了3.17倍。-Based on statistical decision rules of the number of adap