搜索资源列表
sift2
- 提出了一种基于线特征和SIFT点特征的多源遥感影像配准方法。该方法首先匹配待配准影像和参 考影像中的线特征,利用匹配直线构建虚拟角点 其次,针对传统SIFT算法匹配多源遥感影像特征点存在的 不足,采用线特征约束点特征的方法进行SIFT同名点对的提取 最后结合虚拟角点对及SIFT同名点对构建三角网进行小面元微分纠正。 -A line-based features and SIFT features multi-point sources of remote sensing image
sift4
- :提出一种基于尺度不变特征变换(SIFT)特征匹配的目标跟踪方法.首先使用SIFT提取目标特征,构 建目标特征库,然后使用基于K维树的特征匹配算法,对实时序列图像提取的SIFT特征与特征库中目标进行精确匹配 -: Based on Scale Invariant Feature Transform (SIFT) feature matching target tracking. The first to use SIFT target feature extraction, featur
sift5
- :研究了一种多目标识别算法,该算法用SUSAN角点形成SIFT特征点,采用阶梯图像金字塔结构实现尺度不变,为所有匹配点建立统一的超定线性方程组并对该方程组系数矩阵进行简 化使其维数降低一半,得到增广矩阵.对增广矩阵进行列变换,依据坐标转换的特性可从中提取多目标的稳定正常点,实现了快速分离多目标的匹配点. -: Study of a multi-target recognition algorithm using SUSAN corner formed SIFT feature point
A_simple_method_to_steoro_match
- 汽车防撞,技术路径不外:1.雷达测距防撞;2.视差测距防撞。前者,一旦保有量较大,必定遭遇互相干扰问题;后者,以前主要问题是,算法复杂,实时性差。 本文公开了一种新算法(已申请发明专利),主要运算可以借助硬件组合逻辑模块并行执行,可以极大提高视差测距的实时性,满足汽车防撞的要求。-(Background) Stereo matching, requires in two images to identify two pixels to be matched each other, i
sift-introduction
- SIFT特征匹配算法是目前国内外特征点匹配研究领域的热点与难点,其匹配能力较强,可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,甚至在某种程度上对任意角度拍摄的图像也具备较为稳定的特征匹配能力。该算法目前外文资料较多,但中文方面的介绍较少.-SIFT feature matching algorithm is at home and abroad feature points matching hot area of research and diffi
image-matching--
- 首先对图像 进行高斯和 Wallis 滤波处理,然后采用简化 SIFT 算法进行特征点提取,最后通过特征点双向 匹配方法实现图像的精确匹配。通过对缺陷版图图像的试验验证了该方法具有匹配点数量 多、准确率高、无重复点等优点。-First of all Gaussian image filtering and Wallis and simplified SIFT feature point extraction algorithm, and finally through the fea
image-matching-
- 针对 128 维 SIFT 特 征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率 . 实验结 果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果 . 与原算法相比,在保 证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低 10%~20% , 对于小尺度的视角变换,误匹配率平均降低 5%. -For 128-dimensi
sift_programm
- SIFT匹配算法,实现多个匹配特征。匹配效果较好。-Based on matlab programm,sift come true to match.
match
- 使用sift算法提取图像特征点,用BBF的索引方式进行配准-extract image features using sift algorithm and complete the registration and stitch by BBF way