搜索资源列表
svm_face_recognition
- 一篇很不错的关于人脸表情识别的论文。论文提出了一种基于人脸局部特征的表情识别方法,先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机( SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机( SVM)表情分类器,确定表情图像的所属类别。-A very good facial expression recognition on paper. This paper proposes a feature based on local expression
KPCAandSVM
- KPCA与SVM共同用于人脸识别 SVM提高了分类效果 KPCA是一种借鉴SVM中核函数的一种较好的特征提取方法-KPCA and SVM for face recognition SVM together to improve the classification results from KPCA is a kernel function in SVM a better feature extraction method
Support-vector-machine-
- 提出了一种支持矢量机的汉语声调识别新方法。论文首先在基频和对数能量的基础上,建立了一个适合于支 持矢量机分类的等维声调特征。然后对支持矢量机的多分类策略和不同核函数对声调识别的影响进行了实验研究。 与BP神经网络相比,支持矢量机具有更高的识别率和更强的推广能力。-This paper presents a novel support vector machine based Chinese tone recognition method.A new tone recognition
DCT
- 提出了一种基于DCT提取人脸特征技术和支持向量机分类模型的人脸识别方法。利用离 散余弦变换可提取人脸可识别的大部分信息,而支持向量机作为分类器,在处理小样本、高维数等 方面具有独特的优势,且泛化能力很强,无需先验知识。从ORL 人脸库上的实验结果可以看出, DCT特征提取是很有效的,且SVM的分类性能优于最近邻分类器,同时提高了整个系统的运算速 度。-A face recognition method based on DCT for face feature extractio
Partial-discharge-signals-of
- 提出了基于主动学习SVM的局部放电模式识别方法。将主动学习的思想引用到“一对一”多分类SVM分类器,选用基于后验概率的釆样函数对放电样本进行选择,挑选出对分类器最有价值的样本进行训练。 -Puts forward the partial discharge pattern recognition method based on active learning SVM. Will reference to the one to one the ideology of active stud
fisher
- 人脸识别,分类SVM,对图片进行训练,标签,识别。-Face recognition, classification SVM