搜索资源列表
OnTrackingofMovingObjects
- 学位论文;运动物体跟踪方法主要包括卡尔曼滤波,Mean-shift,Camshifi算法,粒子滤波器,Snake模型等;应用卡尔曼滤波方法设计了一套煤矿矿工出入自动监测系统;提出了一种新的基于高斯混合模型的颜色特征提取方法,该方法克服了现有的Camshift算法Continuousl y Adaptive eanshift中跟踪目标特征提取精确度低和计算复杂度高的缺陷-Dissertation moving object tracking methods include Kalman filt
Tracking_and_Object_Classification_for_Automated_S
- O.Javed and M.Shah. 《Tracking and object classification for automated surveillance》. 这篇英文文献是有关运动目标检测跟踪及其分类的文章。该文利用“人体运动的周期性”,把运动目标分为人、人群、机动车。具有较强的参考价值。-O. Javed and M. Shah. " Tracking and object classification for automated surveillance" .
meanshift
- 利用meanshift在MATLAB中实现目标检测和跟踪-implement object detection and track on matlab by meanshift
SRS-of-Dynamic-object-Path-detection-System.doc.r
- The SRS document for a system that track human objects across multiple non-overlapping cameras.
An-Introduction-to-the-Kalman-Filter
- the first introduction to Kalman Filter, methods that used to track moving object
Object-Tracking-in-Wireless-Sensor-Networks_final
- A presentation describing object tracking in wireless sensor networks contains how to track, PROTOCOLS AND ALGORITHMS AVAILABLE.
servo
- track an object from an image
3
- 由于载体对象的高动态特点,其上装载的GNSS 接收机在捕获信号和跟踪定位上面临很大的挑战,因此致使 GNSS/INS 组合系统的定位效果受到严重影响。本论文以 MEMS IMU/GNSS 超紧组合为研究目标,并以 MEMS IMU 环路辅助的GNSS/INS 紧组合技术为研究重点,深入研究了 MEMS IMU 辅助的 GNSS 信号捕获、MEMS IMU 辅助的 GNSS 信号跟踪、MEMS IMU 辅助的 GNSS/INS 紧组合导航定位算法和基于矢量跟踪结构的 GNSS/INS 超紧组
Moving-Object-Detection-and-Tracking
- extracting background Bit-layer-A method of achieving background is presented which detect the moving object with statistics from complex scene. Compared with other methods of achieving image background, this approach can achieve and update s
Motion-and-Feature-Based-Person-Tracking
- This document will help to track the object based on motion and features.
Face-Detection-and-Tracking---MATLAB-a-Simulink-E
- Object detection and tracking are important in many computer vision applications including activity recognition, automotive saf ety, and surveillance. In this example, you w ill develop a simple f ace tracking system by dividing the tracking probl
track.m
- TRACKING AN OBJECT IN A SEA ARE FROM RADAR SONAR
099CCIT0394011-001
- 擴增實境技術是在真實視訊影像中加入虛擬物件,並透過追蹤與定位技術,可以與人們產生良好之互動效果。在視覺追蹤應用領域裡,可分為標記與無標記兩類應用。標記識別技術較為成熟,目前擴增實境開發平台以採用標記識別為主;至於無標記則侷限在特定方法之識別追蹤應用領域,例如樂高玩具利用包裝盒上之印刷圖片當作辨識物件。面對無標記擴增實境之應用日趨重要,且必須因應不同物件採用不同特徵之識別追蹤方法來達成無標記擴增實境之應用。而目前擴增實境平台並不提供模組化方式來替換識別追蹤方法,因此本文提出無標記擴增實境實驗平台,
NCS2011---146---autmented-reality
- 目前擴增實境技術相關應用大部分以使用標記為主,但各式應用需求與日俱增,無標記(markerless)擴增實境技術使用上更具彈性,不必受限於標記的使用,因此應用層面更廣。視覺追蹤技術是擴增實境系統重要底層核心技術之一,但使用視覺追蹤技術在實際應用上易受到追蹤物件本身及外觀變化之影響,因此本文提出適用於無標記擴增實境應用之物件追蹤方法,能有效追蹤各式真實物件。首先框選設定追蹤物件;接著擷取物件特徵值,藉由特徵值比對以持續追蹤物件,並利用金字塔L-K光流法以縮短比對運算時間;最後經由2D-3D座標轉換
Understanding-the-Basis-of-the-Kalman-Filter
- This document represent the kalman filter which can track the moving object. it is proofed that this filter is optimal in the case of gaussianity.