搜索资源列表
求解机械优化的Pareto多目标中心粒子群算法
- 摘要:针对基于权重法的多目标算法无法求解约束多目标问题的缺陷,将中心粒子群算法与Pareto 解集搜索算法相结合,提出 一种Pareto 多目标中心粒子群算法。将此方法用来优化气门弹簧的模型,实验结果表明,该优化方法能够快速准确地收敛于Pareto 解集,并且使其对应的目标域均匀地分布于Pareto最优目标域。
求解药代动力学参数的混合人口迁移算法
- 摘要:针对传统方法优化药代动力学参数时精度不高的缺陷,将Hooke-Jeeves 算法与人口迁移算法有机融 合,使两者取长补短,既提高了算法的精度,又加快了算法的收敛速度。将混合人口迁移算法用于血管外给药 二室模型参数优化的实验之中,不仅比传统的残数法效果要好,而且比Hooke-Jeeves 算法或人口迁移算法更 优,精度更高。多次实验表明:算法具有良好的可靠性和稳定性,是一种较好的解决药代动力学参数的方法。
求解药代动力学参数的自适应混合粒子群算法
- 摘要:针对传统方法具有初始值敏感和进化算法无法确定搜索范围等缺陷,将Nelder-Mead 单纯形与粒子群算法相结合,提出 了一种基于Nelder-Mead单纯形与粒子群算法的具有时变加速因子的自适应混合粒子群算法。将该混合算法用于血管外给药二 室模型参数优化的实验之中。仿真实验结果表明,算法计算精度高而且鲁棒性强,是一种新颖的解决药代动力学参数优化的较 好方法。
面向不确定目标的多无人机协同搜索控制方法
- 多架 UAV( Unmanned Aeiral Vehicle) 同时对一个未知区域进行搜索,目 的在于获取搜索区域的信息,尽可能多地发现目标。针对不确定目标的搜索问题,研究多无人机协同搜索控制的新方法。建立多 UAV 运动模型,用目标存在概率对搜索环境进行描述,给出基于 Bayesian 准则的搜索环境更新方法,考虑了环境探测回报、目标发 现回报和无人机协同回报,采用 MPC 实现对多目标优化问题的迭代求解。通过仿真实验和对比分析,证明了该方法具有更好的搜 索性能。
结合双模多尺度 CNN 特征及自适应深度KELM 的浮选工况识别
- 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度 CNN 特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道 CNN 网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对 CNN 特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码