搜索资源列表
虹膜身份识别技术
- 介绍了当前最有发展前景的生物特征识别技术一虹膜身份识别技术,它包括虹膜图像的获取、预处理、特征提取与编码以及分类几个步骤。详细介绍了当今具有代表性的虹膜识别算法,指出各种算法的特点并比较其优劣。最后,针对 虹膜识别技术存在的主要问题分析了虹膜识别的发展方向,即精度高、速度快、鲁棒性好的定位算法,高效的特征提取方法,机器学习的分类方法,虹膜图像的质量评价方法,不完整、不合作情况下的虹膜识别研究以及活体虹膜检测等。
结合双模多尺度 CNN 特征及自适应深度KELM 的浮选工况识别
- 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度 CNN 特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道 CNN 网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对 CNN 特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码