搜索资源列表
求解非线性方程组的混合人口迁移算法
- 摘要:针对变尺度法对初始值敏感和人口迁移算法容易陷入局部极值的缺陷,结合变尺度法和人口迁移算 法各自的优点,提出了一种混合人口迁移算法,用来求解非线性方程组。该混合算法不仅发挥了人口迁移算 法强大的全局搜索能力,而且利用了变尺度法的局部精细搜索能力。实验结果表明,该算法不但以较高的精 度求出了各种非线性方程组的解,而且鲁棒性强,收敛速度快速,是一种解决非线性方程组问题的较好方法。
求解非线性方程组的BFGS差分进化算法
- 摘要:针对差分进化算法进化后期收敛缓慢和稳定性不强的缺陷,将BFGS算法插入差分进化算法当中,提出了一种BFGS差 分进化算法,用来求解非线性方程组。通过5 个非线性方程组和一个工程实例的实验,说明:算法收敛精度较高、收敛速度较快、 鲁棒性强、收敛成功率高,是一种较好的解决非线性方程组的方法。
求解药代动力学参数的自适应混合粒子群算法
- 摘要:针对传统方法具有初始值敏感和进化算法无法确定搜索范围等缺陷,将Nelder-Mead 单纯形与粒子群算法相结合,提出 了一种基于Nelder-Mead单纯形与粒子群算法的具有时变加速因子的自适应混合粒子群算法。将该混合算法用于血管外给药二 室模型参数优化的实验之中。仿真实验结果表明,算法计算精度高而且鲁棒性强,是一种新颖的解决药代动力学参数优化的较 好方法。