搜索资源列表
求解非线性方程组的混合人口迁移算法
- 摘要:针对变尺度法对初始值敏感和人口迁移算法容易陷入局部极值的缺陷,结合变尺度法和人口迁移算 法各自的优点,提出了一种混合人口迁移算法,用来求解非线性方程组。该混合算法不仅发挥了人口迁移算 法强大的全局搜索能力,而且利用了变尺度法的局部精细搜索能力。实验结果表明,该算法不但以较高的精 度求出了各种非线性方程组的解,而且鲁棒性强,收敛速度快速,是一种解决非线性方程组问题的较好方法。
求解机械优化的Pareto多目标中心粒子群算法
- 摘要:针对基于权重法的多目标算法无法求解约束多目标问题的缺陷,将中心粒子群算法与Pareto 解集搜索算法相结合,提出 一种Pareto 多目标中心粒子群算法。将此方法用来优化气门弹簧的模型,实验结果表明,该优化方法能够快速准确地收敛于Pareto 解集,并且使其对应的目标域均匀地分布于Pareto最优目标域。
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的