搜索资源列表
基于神经网络的数字字符识别
- 基于BP神经网络的字符识别系统~用MATLAB编写`包括论文~以及代码~适合于毕业设计-BP neural network-based character recognition system using MATLAB ~ `~ including papers and code ~ suitable for graduate design 字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的
行人和自行车交通识别
- 这是一篇关于基于BP神经网络的行人和自行车交通识别方法的论文,希望对大家有所帮助。
基于RBD的民航客运预测及MATLAB的实现
- :基于统计学原理的传统的民航客运量预测方法难以预测动态数据的内在结构和复杂特 性。为了提高民航客运量预测的准确性,利用人工神经网络对非线性系统的函数所具有的以任意精度逼近的良好特性,选用RBF 神经网络为模型并利用MATLAB 编程实现了对民航客运量的准确预测。本文介绍了RBF 神经网络MATLAB 的相关知识,并以民航客运量的1978 年至2007 年的实际数据为例进行RBF 神经网络的训练与测试,实验结果表明,将RBF神经网络与MATLAB 结合运用在民航客运量预测中具有可行性,预测精度更高
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的
粗糙集
- 采用某股份制银行的698 家贷款企业样本, 基于粗糙集-Elman 神经网络集成构建了贷款企业五 级分类评估模型.该模型首先应用粗糙集理论约简出重要指标体系, 然后将训练样本送入Elman 神经网 络进行学习和训练, 进而对检验样本的风险等级进行判别.结果表明, 与传统的logistic 回归模型相比, 粗 糙集-神经网络系统对检验样本预测精度更高, 是一种更为有效和实用的分类方法, 为我国商业银行五 级分类管理提供一个新的方法. 关键词: 粗糙集;Elman 神经网络
FaceNet-A-Unified-Embedding-for-Face-Recognition-and-Clustering
- FaceNet---深度学习与人脸识别的二次结合 Facenet是一个通用的系统,采用CNN神经网络将人脸图像映射到128维的欧几里得空间,我们可以根据两幅人像的欧几里得距离去判断两个人像的相似程度。两个人像之间的欧几里得距离越近,说明它们越相似。 FaceNet可以用于人脸验证(是否是同一人?),识别(这个人是谁?)和聚类(寻找类似的人?)。FaceNet采用的方法是通过卷积神经网络学习将图像映射到欧几里得空间。空间距离直接和图片相似度相关:同一个人的不同图像在空间距离很小,不同人的图像在