搜索资源列表
基于RBF神经网络的CPI预测
- 采用RBF神经网络的结构、特性和训练算法,根据CPI(消费者物价指数)与其影响因素之间存在的映射关系,应用神经 网络建立了多因素非线性时间序列预测模型。最后通过仿真实验和研究,把RBF神经网络与传统的BP网络预测结果进行比较,结果证明,该模型的预测精确度更高,结果令人满意。
基于Lyapunov指数和CBP的混沌时序预测模型
- 一种改进BP算法
支持向量机非线性回归通用MATLAB源码
- 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。
PSO-BP-EMD预测农产品期货价格
- 采用PSO-BP-EMD方法预测农产品期货价格,并与小波方法、VMD方法进行对比,结果表明组合预测方法的精度更高。