搜索资源列表
基于RBF神经网络的CPI预测
- 采用RBF神经网络的结构、特性和训练算法,根据CPI(消费者物价指数)与其影响因素之间存在的映射关系,应用神经 网络建立了多因素非线性时间序列预测模型。最后通过仿真实验和研究,把RBF神经网络与传统的BP网络预测结果进行比较,结果证明,该模型的预测精确度更高,结果令人满意。
支持向量机非线性回归通用MATLAB源码
- 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的