搜索资源列表
Wind-power-prediction-problem
- 利用新陈代谢灰色预测、样本自适应BP 神经网络和时间序列分析分别进行风电功率实时预测和日前预测,并采用熵值取权法确定组合权重,引入自控机制,构建反馈,提出组合预测法和基于时间序列的卡尔曼滤波法。研究结果表明,组合预测模型能减少各预测点较大误差的出现,而卡尔曼滤波能大幅消减原始序列的波动影响。-Use of metabolic gray forecast, sample adaptive BP neural network and time sequence analysis respective
kalman-filter-design
- 动态定位中的卡尔曼滤波研究_宋迎春编写,描述了卡尔曼滤波在预测领域的应用-kalman filter design