搜索资源列表
WaveletTransform
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
waveletanalysis
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
mutual-information
- 红外和可见光的匹配跟踪在军事、遥感等领域有着广泛的应用。针对灰度和图像特征存在比较大差异的红外和可见光图像,本文采用了最大互信息算法,结合形态学梯度和小波分解。互信息算法优点在于不需要对多模图像灰度间的关系做任何假设,不足之处在于它对图像空间信息的忽略而且计算时间较长。本文互信息结合多结构元的形态学梯度检测的图像边缘,可以使得图像匹配精度提高,还能改善局部极值的问题,再利用小波分解对图像进行压缩降低分辨率,可以减少互信息计算量。最后的实验数据表明在配准过程中互信息的计算速度得到了优化,匹配精度得
An-Improved-ModeBased
- 针对关节式物体检测的复杂性, 本文提出一种新颖的视觉推理方法。该方法基于可变形的物 体模型, 同时利用图像中所包含的边缘信息特征( 不依赖于局部特征, 如肤色等) 及各子部件的空间位置关 系, 迭代地进行关节式物体检测和定位估计。实验证明, 该方法有较强的抗背景干扰能力, 视觉上能大幅 度改进关节式物体检测、定位的结果-Aiming at the complex ity of art iculated object detect ion, this paper pro poses a
2005510101315809
- 提出了一种复杂背景下的多车牌图像分割和识别方法,首先采用统计和特征匹配相结合的方法进行背景提取,将可能存在车辆的区域提取出来;然后分别对可能的车辆区域进行局部边缘检测,并使用车牌的先验知识确定车牌的位置和单个字符分割,包括车牌倾斜时的字符分割;最后使用PCA和神经网络相结合的方法精确识别车牌。-Proposed a multi-plate image segmentation and recognition method under a complex background, the first