搜索资源列表
zuida
- 图象分割中最大类间方差法在图像处理中的应用
an-improved-2D-histogram
- 提出了一种新的根据最大类间方差原则的阈值图像分割方法,并进行了仿真实验。实验的结果表明, 所提出的改进方法是有效的,该算法的分割效果较好,运算速度也得到了提高。-2-D histogramis brought forwardwhichuses the maximum between cluster variance as the rule
Otsu-method
- 本文中包含了最大类间方差法(otsu)的原理,以及其过程。最后提供了其c语言源代码-This article contains a maximum between-class variance method (Otsu) principle, as well as the process. Finally, the c language source code
ostu
- 最大类间方差的基本思想是使用一个阈值将整个数据分成两个类,假如两个类之间的方差最大,那么这个阈值就是最佳的阈值-The between-cluster variance as the basic idea is to use a threshold to the whole data is divided into two classes, if the maximum variance between two classes, then the threshold value is the b
wenxian
- 针对自然生长状态下的成熟苹果图像的识别问题,提出选用R-G色差模型,改进的Ostu最大类间方差法分割图像。 然后用面积阈值法消除噪声,获取成熟苹果果实的目标区域。然后采用基于OpenCV的圆形Hough变换方法对多个粘连苹果果实进行分离。-For image recognition problem ripe apples natural growth state, the proposed selection of R-G color model between improved Ostu Ot