搜索资源列表
User_Guide_v1.0b
- TVAL3算法的使用手册。TVAL3是一种利用梯度模稀疏性的压缩感知重构算法,恢复平滑图像效果不错。-User_Guide for TVAL3. TVAL3 is s compressed sensing reconstruction algorithm using gradient model sparsity. It can restore smooth image with good result.
cs-speech-enhancement
- 文利用带噪语音经特征基函数矩阵转换后所具有的稀疏特性,用最大似然估计方法对转换后得到的稀疏 分量进行非线性压缩去噪,然后再经过反变换和重构恢复出原始语音信号的估计。特征基函数矩阵反映了语音数据本 身的统计特性,因此具有很好的合理性和可取性。仿真结果表明利用稀疏编码方法能极大程度地抑制背景噪卢,与小波消噪法相比优势明显。-a speech enhancement algorithm based Compressed Sensing.
Image-Sparse-Representation-Model
- 完备图像稀疏表示是一种最新的图像表示模型,采用过完备字典中原子的线性组合形式实现图像的稀疏表示.传统 的过完备图像稀疏表示模型采用重建误差的平方和作为保真项.该保真项没有充分考虑到人眼对图像的感知特性,无法度量图 像中边缘、轮廓、纹理等局部几何结构的变化.本文基于过完备稀疏表示理论思想,建立了新的稀疏性正则化的图像稀疏表示模 型.模型中的正则项约束图像表示系数的稀疏性,保真项采用更符合视觉感知的结构相似性度量.基于正交匹配追踪算法,提出 了基于结构相似度的正交匹配追踪算法.实验结
Image-Super-Resolution-Algorithms
- 前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图 像块问的筹别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为 平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别 训练各自对应的低分辨率和-岛分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应 的高、低分辨率字典通过正交匹配追踪箅法重构.实验结果表明,与单字典稀疏表示算法相比
Structured-Compressive-Sensing
- 本文围绕压缩感知的三个基本问题, 从结构化测量方法、结构化稀疏表示和结构化信号重构三个方面对结构化压缩感知的基本模型和关键技术进行详细的阐述.-In this paper, the basic models and key techniques of structured compressive sensing are introduced in terms of the structured measurements, the structured dictionary representat