搜索资源列表
LZSR4345556-
- yangjianchao将稀疏编码引入到超分辨率重建的文章-Yangjianchao will be introduced to the sparse coding super-resolution reconstruction
cs-speech-enhancement
- 文利用带噪语音经特征基函数矩阵转换后所具有的稀疏特性,用最大似然估计方法对转换后得到的稀疏 分量进行非线性压缩去噪,然后再经过反变换和重构恢复出原始语音信号的估计。特征基函数矩阵反映了语音数据本 身的统计特性,因此具有很好的合理性和可取性。仿真结果表明利用稀疏编码方法能极大程度地抑制背景噪卢,与小波消噪法相比优势明显。-a speech enhancement algorithm based Compressed Sensing.
信号与图像的稀疏分解及初步应用
- 信号与图像的稀疏分解是信号与图像的一种新的分解方法,在信号与图像的压缩编码、去噪、信号的时频分析与信号识别等方面有看极为广阔的应用前景,是信号与图像处理研究领域中一个新的很有意义的研究方向。本书总结了国际上在这一研究方向 的研究进展以及作者多年来的研究成果。在稀疏分解方法方面,重点介绍了作者关于信号与图像稀疏分解快速算法的研究成果。在稀疏分解应用方面,重点介绍了作者在信号处理及图像压缩编码方面的研究成果。
fbp算法
- 稀疏编码与字典更新交替进行,最终训练出一个优良的字典