搜索资源列表
Text-feature-dimension-reduction
- 关键词:文本分类 特征降维 规则抽取 模式聚合 粗糙集 -Keywords: text classification feature dimension reduction rule extraction model aggregation rough set
AD637_www.ic37.com
- 真有效值转换 应用指南 第2版作者:Charles Kitchin、 Lew Counts-FEATURES High Accuracy 0.02 Max Nonlinearity, 0 V to 2 V RMS Input 0.10 Additional Error to Crest Factor of 3 Wide Bandwidth 8 MHz at 2 V RMS Input 600 kHz at 100 mV RMS Computes: Tr
image-matching-
- 针对 128 维 SIFT 特 征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率 . 实验结 果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果 . 与原算法相比,在保 证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低 10%~20% , 对于小尺度的视角变换,误匹配率平均降低 5%. -For 128-dimensi
PCA
- 针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP, SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高 与采用稀疏化前的
Cost
- COST-SENSITIVE SEMI-SUPERVISED DISCRIMINANT ANALYSIS FOR FACE RECOGNITION Abstract: In our Project, we present a cost-sensitive semi-supervised discriminant analysis method for face recognition. In previous methods of dimensionality reductio
IG
- 文本分类中特征提取的代码。采用信息增益法,对文本的空间向量模型能达到有效降维。文件的输入形式必须是词号-词频形式。- Text Categorization feature extraction code. Using information gain method, the vector space model of the text to achieve effective dimensionality reduction. Enter the file must be in the f
ummnx
- gmcalab 快速广义的形态分量分析,本科毕设要求参见标准测试模型,用于特征降维,特征融合,相关分析等。- gmcalab fast generalized form component analysis, Undergraduate complete set requirements refer to the standard test models, For feature reduction, feature fusion, correlation analysis.
kunyeigen
- 可直接计算得到多重分形谱,用蒙特卡洛模拟的方法计算美式期权的价格以及基本描述,用于特征降维,特征融合,相关分析等。- It can be directly calculated multi-fractal spectrum, Monte Carlo simulation method of calculating the American option price and basic descr iption, For feature reduction, feature fusion, cor
pvsxp
- 多机电力系统仿真及其潮流计算,包含收发两个客户端的链路级通信程序,用于特征降维,特征融合,相关分析等。- Multi-machine power system simulation and flow calculation, Contains two clients receive link-level communications program, For feature reduction, feature fusion, correlation analysis.
ywsyx
- 用于建立主成分分析模型,数据模型归一化,模态振动,用于特征降维,特征融合,相关分析等。- Principal component analysis model for establishing, Normalized data model, modal vibration, For feature reduction, feature fusion, correlation analysis.
nduur
- 用于特征降维,特征融合,相关分析等,包含飞行器飞行中的姿态控制,如侧滑角,倾斜角,滚转角,俯仰角,有较好的参考价值。- For feature reduction, feature fusion, correlation analysis, It comprises aircraft flight attitude control, such as slip angle, tilt angle, roll angle, pitch angle, There are good reference