搜索资源列表
knn
- 朴素贝叶斯(Naive Bayes, NB)算法是机器学习领域中常用的一种基于概率的分类算法,非常简单有效。k近邻法(k-Nearest Neighbor, kNN)[30,31]又称为基于实例(Example-based, Instance-bases)的算法,其基本思想相当直观:Rocchio法来源于信息检索系统,后来最早由Hull在1994年应用于分类[74],从那以后,Rocchio方法就在文本分类中广泛应用起来。
Chameleon
- Chameleon算法是一种通过在合并两类时用更高 的标准来提高聚类质量的聚类算法,它既考虑了互连 性,又考虑了近似度,特别是簇内部的特征,因而能够 自动地适应被合并簇的内部特征,因此具有较强的发 现任意形状和任意大小簇的能力。Chameleon算法首 先由数据集构造成一个K-最近邻图Gk,再通过一个 图的划分算法将图Gk划分成大量的子图,每个子图 代表一个初始子簇,最后用一个凝聚的层次聚类算法 反复地合并子簇来找到真正的结果簇。 -Chameleon
KMM
- 针对传统快速k-近邻分类算法的缺陷,提出了一种基于近邻搜索的快速k-近邻分类算法———超球搜 索法。该方法通过对特征空间的预组织,使分类在以待分样本为中心的超球内进行,有效地缩小了搜索范围。 -Rapid response to traditional k-neighbors of the defect classification algorithm, a fast search based on neighbor k-neighbor classification algorithm
K-nearest-neighbor-algorithm
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,讲解详细,非常有用-From K neighbor algorithm and distance measurement when it comes to KD tree, SIFT+ BBF algorithm, explain in detail, very useful