搜索资源列表
lgktwork
- 四阶龙格库塔求解电机启动的仿真程序 !-four bands Runge Kutta Motor start solving the simulation program!
runge_kutta2
- the runge kutta method
ApplicationoftheRunge2KuttaAlgorithminReal2time.ra
- _龙格_库塔_算法在航天器实时落点计算中的应用的文档。-_ Runge-Kutta _ _ real-time algorithm for spacecraft impact point calculation documents.
euler_runge_kutta
- Document on Optimization Techniques and source code for solving problems using Euler method and Runge Kutta method
runge-kutta
- 四阶龙格-库塔法求微分方程,通过实数编码方法实现简单易懂--Runge- Kutta Method to solve derivative Equations
NonlinearDynamicsofDuffing
- 采用4阶龙格库塔法和10阶连分式欧拉法,数值计算、分析了分数阶阻尼Duffing系统的 动力学特性.利用相图、Poincare截面映射图和分岔图等非线性动力学分析方法研究了阻尼的分数 阶微积分阶数对Duffing系统动力学性能的影响,采用分岔图法研究了外部激励的幅值和频率变 化时分数阶阻尼Duffing系统的动力学行为.分析表明,分数阶阻尼的阶数在0.1~2.0发生变化 时,系统依次进入周期运动、混沌运动、周期运动、混沌运动和周期运动,并且在混沌运动区间中存 在着周期运动窗口
bingtaixitong
- 对病态系统采用了四阶龙格库塔法和蛙跳法进行了仿真,得到了很好的实验结果-Pathological systems using fourth-order Runge-Kutta method and the leapfrog method for the simulation, the experimental results
tu
- 微分方程数值解的梯形方法,欧拉方法,龙格-库塔方法及数值分析。-Trapezoidal method of differential equations, Euler' s method, Runge- Kutta methods and numerical analysis.
simulation-program
- 针对自适应律的离散化问题,一种方法是利用采样时间进行差分的离散化,但该方法精度差,另一种方法是利用数值迭代方法进行高精度离散化[4]。这里介绍一种高精度数值迭代方法—RKM(Runge-Kutta-Merson)方法-Adaptive law for the discrete problem, a method is the use of sampling discrete time difference, but poor accuracy of the method, an alternat
rk4
- Runge Kutta 4th order
Waidandao
- 西北工业大学课程设计,龙格库塔法求解轰炸弹道。-Northwestern Polytechnical University curriculum design, Runge-Kutta method to solve the bombing trajectory.
rungekutta
- Runge Kutta program.
AD
- Boundry layer runge kutta
secondoderrk4
- matlab 求解二阶微分方程例子演示,二阶非线性微分方程;x’’+x^3/(1+x^2)=0 初始条件 x(0)=A x’(0)=0-second order runge-kutta
rk4rooster
- Runge–Kutta 4th In numerical analysis, the Runge–Kutta methods are a family of implicit and explicit iterative methods, which includes the well-known routine called the Euler Method, used in temporal discretization for the approximate solutions of
pendul
- All Runge–Kutta methods mentioned up to now are explicit methods. Explicit Runge–Kutta methods are generally unsuitable for the solution of stiff equations because their region of absolute stability is small in particular, it is bounded.[14] This iss