搜索资源列表
Image_Paper_XuXG
- 图象分割是图象处理中的一项重要工作,目前手工与自动相结合的分割方法在实际工作中得到了广泛应用。本文根据图象经Maar变换后的特征,采用新的判断准则,提出了一种复杂物体边缘定位算法,可以对具有尖角特征的物体轮廓进行快速准确地提取,同时利用矢量化方法消除毛刺,使跟踪获得的边界更符合物体的实际轮廓特征。对多种图象的实验表明本文方法十分有效。-Image segmentation is an important image processing, the current combination of m
Texture-Segmen-ta-t-ion-withWavelet
- 为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率, 提出了一种基于小波变换的利 用特征加权来进行纹理分割的方法. 该方法包括特征提取、预分割和后分割 3 个阶段, 其中, 特征提取在金字塔结 构小波变换的基础上进行 预分割利用均值聚类算法来对原始图象进行初步的分割 后分割则根据预分割的结果 对特征进行加权, 然后利用最小距离分类器来实现图象的最后分割. 与传统的方法相比, 该方法在分割错误率、边 缘准确性以及区域一致性等方面均有明显的改善-To imp rove t