搜索资源列表
Novel-approach-for-texture
- 为提高基于内容的图像检索系统中纹理特征提取的有效性,提出了又一种纹理图像检索方法。该方法 利用非下采样 Contourlet变换对图像进行分解, 提取不同子带和不同方向变换系数矩阵的均值和方差为特征向量, 作 为数据库中纹理图像的索引,并利用两种不同的相似度函数计算图像之间的相似度,建立了一套基于示例查询图像 的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比, 该方法不仅能降低特征向量维数,而且能取得 更高的检索准确率和检索速度。-To i ncrease t he
Texture-Segmen-ta-t-ion-withWavelet
- 为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率, 提出了一种基于小波变换的利 用特征加权来进行纹理分割的方法. 该方法包括特征提取、预分割和后分割 3 个阶段, 其中, 特征提取在金字塔结 构小波变换的基础上进行 预分割利用均值聚类算法来对原始图象进行初步的分割 后分割则根据预分割的结果 对特征进行加权, 然后利用最小距离分类器来实现图象的最后分割. 与传统的方法相比, 该方法在分割错误率、边 缘准确性以及区域一致性等方面均有明显的改善-To imp rove t
基于LBP纹理特征的运动目标检测算法
- 基于LBP纹理特征的运动目标检测算法.rar-Moving target detection algorithm based on LBP texture features. Rar