搜索资源列表
random-noise
- 基于小波变换的随机噪声降噪的matlab 主要运用的方法有软阈值去噪法和硬阈值去噪法-Based on wavelet transform matlab random noise and noise reduction methods are mainly used soft thresholding method and hard thresholding method
112
- 以离散平稳小波变换的心电信号噪声去除方法为基础,根据噪声的不同来源及其频带分布特点,对变换后的细节信号采用不同的阈值去噪方案。并提出一种基于准则原理的阈值选取方法。经国际标准数据库中验证,试验表明,该方法行之有效-With discrete stationary wavelet transform of ecg signal to noise removal method as the foundation, according to the different sources of noise
113
- 介绍了小波二进制变换的基本原理 , 简述了小波变换奇异性和信号突变的关系。 基于小波变换, 给出一种结合3R 准则、 软硬阈值折衷法的奇 异信号小波检测方 法。仿真结果表明此法 既能有效地消除噪 声, 又能较好 保留奇异信号-This paper introduces the basic principle of binary wavelet transform, signal singularity and wavelet transform are briefly discussed the
xiaobobaoyuzhijiangzao
- :提出一种基于对偶树复小波块阈值的信号降噪方法,并将其成功应用于机械故障诊断中。机械设备的振动信号都或多或少地含有噪声,导致弱故障信息的提取一直是故障诊断的难点和热点。提出的降噪方法充分利用对偶树复小波变换的平移不变性和块阈值法的更优估计特性,可以获得比常规的小波降噪方法以及基于常规离散正交小波变换的 NeighBlock 降噪法更高的信噪比, 不仅能有效抑制高斯白噪声, 还能够去除冲击信号中的脉冲噪声。-:A denoising method of block thresholding bas
Wavelet-Shrinkage_-Asymptopia_
- 小波变换阈值去噪的文章,基于最大最小准则计算-Minimax Estimation, Adaptive Estimation, Nonparametric Regression, Density Estimation, Spatial Adaptation, Wavelet Orthonormal bases, BesovSpaces, Optimal Recovery.
基于 HHT 的船体结构应力监测数据 特征分析和去噪方法
- [目的]为了去除船体结构应力监测数据中的噪声信号,获得有效的数据信息,以便为后续数据挖掘提 供支撑,[方法]首先,采用 HHT 方法中的经验模态分解(EMD)算法对数据进行成分分析,得到固有模态函数 (IMF)和余项。然后,通过 Hilbert变换得到 Hilbert谱,证明应力监测数据的非平稳特性。最后,以信噪比(SNR) 和均方根误差(RMSE)为例,结合自适应去噪和小波阈值去噪两种方法对应力监测数据进行去噪效果比较。 [结果]结果表明,基于 HHT方法的自适应去噪和小波去噪都具有一定