搜索资源列表
Texture-Segmen-ta-t-ion-withWavelet
- 为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率, 提出了一种基于小波变换的利 用特征加权来进行纹理分割的方法. 该方法包括特征提取、预分割和后分割 3 个阶段, 其中, 特征提取在金字塔结 构小波变换的基础上进行 预分割利用均值聚类算法来对原始图象进行初步的分割 后分割则根据预分割的结果 对特征进行加权, 然后利用最小距离分类器来实现图象的最后分割. 与传统的方法相比, 该方法在分割错误率、边 缘准确性以及区域一致性等方面均有明显的改善-To imp rove t
matlab-wavelet
- 应用db5小波和 bior4.4小波, 对图象cameraman.tif分别进行2层小波分解和重构-The application db5 wavelet bior4.4 of wavelet image cameraman.tif 2-layer wavelet decomposition and reconstruction
wuzhongchangyongxiaoboji
- 给出五种常用小波基的时域和频域波形图及matlab代码。-Five commonly used wavelet basis is given time domain and frequency domain waveform and Matlab code.
energy-leakage--dual-tree
- 首先根据高斯白噪声频率充满整个频带的特性,通过双树复小波包变换对高斯白噪声进行分解,利用频带能量泄漏的定量分析方法,验证了双树复小波包变换具有较低的频带能量泄漏特性;其次利用双树复小波包变换逐层分解信号,对每层分解所得分量求其FFT谱的峭度,得到基于双树复小波包变换的谱峭度图,根据图中峭度最大的原则,可以自动准确的选择信号分解最佳层数和最佳分量;最后将基于双树复小波包变换的谱峭度图的故障诊断方法应用于实际工程中,对齿轮故障振动信号进行分析,选择最佳分解层数和分量后利用希尔伯特包络解调,有效准确地
wavelt-and-GrayGradinet
- 小波特征提取和灰度共生矩阵对图线特征进行提取-Wavelet feature extraction and GLCM feature extraction of plot