搜索资源列表
waveletanalysis
- 小波分析本质上是一门分析学科,属于时频分析的一种,是傅里叶变换发展史上里程碑似的进展,Meyer认为小波分析是人们对变化敏感体会的一种方法,正如我们对速度的反应一样,身体及大脑仅对加速度有反应,而对速度没感觉。只要火车或飞机的速度是常数,我们就感到它们没有动,这就是小波分析的基本思想,它与人类体验反应、思维方式、视觉工程等十分类似,小波分析的这一特性便于我们区分信号的敏感部分和平坦部分,实施对信号的分析和检测。-wavelet analysis
di11qi
- 时频分析的综述和线性调频信号的参数估计方法研究-Summary of time-frequency analysis and linear FM signal parameter estimation method
Eeg-signals
- 从脑电信号的分析出发,论述了频域分析、时域分析等脑电图分析中常用的信号分析方法和特点,特别介绍了Wigner分布、小波变换和匹配跟踪等时频分析方法、人工神经网络和非线性动力学方法在脑电信号分析和处理中的应用情况。 -From the analysis of eeg, discusses the frequency domain and time domain analysis analysis in the analysis of the commonly used eeg signal a
25
- 针对风力发电机齿轮箱的故障,介绍常用的故障诊断方法,理论上分析齿轮箱故障振动 信号的特征,并用 软件仿真其振动信号 对比正常运行与发生故障时的频域信号波形,并进行了一定的分析,为风力发电机齿轮箱的故障诊断提供了参考-Wind turbine gearbox failures, to introduce fault diagnosis method theoretically analyze the characteristics of the vibration signal of a ge
Hilbert335
- 测量6205深沟球轴承的故障振动加速度信号, 对信号进行时频分析, 利用经验模态分解方法将振动信号分解成不同特征时间尺度的固有模态函数,对每个固有模态函数进行Hilbert 变换得到Hilbert 谱,通过谱分析识别轴承的故障部位和类型, 证实Hilbert 谱的有效性-Measuring 6205 deep groove ball bearing fault vibration acceleration signal, the signal frequency analysis, empiri
62
- 对重分配小波尺度谱存在着时、频分辨率不能同时达到最佳及当振动信号中存在着能量较大的噪声时会降低其时频分布可读性的缺陷,提出一种基于参数优化和奇异值分解(SVD)提高重分配尺度谱时频分布可读性的方法。首先利用Shan— non熵方法优化重分配尺度谱基函数的时间.带宽积(TBP),克服其时、频分辨率不能同时达到最佳的缺陷,再对重分配尺度谱 进行SVD降噪降低噪声干扰影响,提高时频分布的可读性。最后用该方法对仿真信号和滚动轴承故障信号进行了分析,结果表明该方法的时频聚集性更好,抗噪能力更强,能
87
- 小波分析可同时从时域和频域两个方面对信号进行分析,结合包络分析十分适合滚动轴承的故障特征提取;基于双通道的全矢小波分析方法不仅对单通道小波分析方法具有兼容性,而且弥补了传统的基于单通道信 息进行旋转机械故障特征提取造成的信息量不完整、易导致误诊的弊端。结果表明,在针对滚动轴承外圈故障特征提取时,全矢小波分析方法较小波一包络分析方法具有一定的优势。 -Wavelet analysis simultaneously from the time domain and frequency doma
Signal-analysis-realized-by-MATLAB
- 描述了matlab基础功能和基础代码的编写,对信号在时域和频域的特点进行分析,并介绍了几种采样方法-Describe the basic function and matlab code to write, on the characteristics of signal in time domain and frequency domain analysis, and sampling method are introduced
fault-diagnosis-LMD
- 基于LMD的时频分析方法及机械故障诊断研究,文章不错-fault diagnosis based on the LMD,time-frequency analyse method
基于改进的希尔伯特振动分解的机械故障诊断方法研究
- 针对多分量机械故障振动信号的特征提取问题,介绍一种基于希尔伯特振动分解( HVD) 的时频分析方法。该方法首先利用 Hilbert 变换得到原始振动信号的解析信号,然后通过对解析信号的瞬时频率低通滤波获得信号中幅值最大分量的瞬时频率,同时经同步检测获得相应的瞬时幅值和初相位,最后经过迭代运算自适应地检测出原信号各分量的时频信息。针对 HVD 方法的边界效应问题,提出一种基于相关系数准则的波形匹配边界延拓法对其进行改进。 通过两组仿真信号分析验证了 HVD 方法对多分量非平稳信号的分解能力,同时
基于希尔伯特黄熵的麻醉深度估计
- 麻醉深度监测是外科手术中必不可少的步骤之一。 目前已经提出多种监测麻醉深度的脑电信号分析方 法, 尤其熵方法得到了广泛的关注。 提出一种新的麻醉深度监测方法-希尔伯特黄熵, 先用经验模态分解—希尔 伯特黄变换处理脑电信号获取希尔伯特黄边际谱, 再根据香农熵定义得到希尔伯特黄熵。 对 19 个接受吸入药物 七氟醚麻醉的病人脑电信号的希尔伯特黄熵和时频均衡谱熵进行计算、测试和比较, 结果表明:希尔伯特黄熵能够 更准确的区分麻醉和清醒状态, 更适合于麻醉深度监测。