搜索资源列表
Shape
- 针对常见的几何形状匹配算法对目标遮挡较为敏感, 提出了一种基于角点匹配的几何形 状定位。 该方法首先根据边缘曲率提取图像的角点, 然后采用基于改进的投票策略的角点匹配算法对检测图与模板图进行匹配, 最后通过 Ransac算法去除错匹配。 实验表明, 该算法定位效果良好,有效地解决了目标部分遮挡问题。-A noval geometry shape position algo rithm based on point feature matching is proposed to solve t
SIFT
- SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果-SIFT (Scale-invariant feature transform) is a local feature detection algorithm by finding a pictur
SLAM
- 本文研究了基于多传感器组合导航方法的SLAM,由于移动机器人无法通过单个传 感器得到可靠的信息,采用多传感器组合导航的方法可以很好的解决这个问题。本文用单个 CCD摄像头和里程计组合进行SLAM研究,并得到更准确的机器人位姿信息。首先用SIFT 算法对不同图像进行特征提取和匹配,得到本质矩阵,对它进行分解,可得到机器人的旋转 矩阵和平移向量(和实际相差一个比例因子)。然后,将它与里程计信息结合,得到机器人的 位姿。在此基础上,可以得到特征点在当前摄像机坐标系中的三维坐标,即创