搜索资源列表
chezuo
- 车座的点云数据,供暂时没有点云的朋友练习实验-the point cloud of a chezuo
extractpointsofSTLmodel
- STL模型是由三角面片组成的,把组成三角面片的顶点提取出来就是对应STL模型的点云模型。-STL model is composed of triangular facets to form the apex of triangulated surfaces extracted from the STL model is the corresponding point cloud model.
STLmodel
- STL模型是由三角面片组成的,提取组成三角面片的顶点就会得到与STL模型对应的点云模型。-STL model is composed of triangular facets to form the apex of triangulated surfaces extracted from the STL model is the corresponding point cloud model.
REandNURBS
- 一篇关于点云预处理,利用NURBS生成曲面实体,并进行数控加工的论文,本着学习的交流的原则和大家共享,版权为原作者和原学校,希望对大家有帮助。-One on the point cloud pre-processing, the use of NURBS surface is generated entities, and make CNC machining of papers, in line with the exchange of learning the principles and
PCD-format-data-set
- PCD数据是Point Cloud Library(PCL)开发库的数据类型,大家如果使用点云开发的话,需要用到这些数据作为示例。-PCD (Point Cloud Data) file format is used inside Point Cloud Library (PCL). The PCD file format is not meant to reinvent the wheel, but rather to complement existing file formats
Hill-climbing
- 爬山法提取窗户,源数据是地面激光扫描点云-Hill climbing method to extract the windows, the source data is a ground-based laser scanning point cloud
Automatic-Building-Extraction.pdf
- 3D 点云建筑物分割代码 3D 点云建筑物分割代码-3D point cloud, buildign segmentation3D point cloud, buildign segmentation3D point cloud, buildign segmentation
tuzi
- 这个是我自己生产的一个点云数据-Point cloud data point cloud data point cloud data point cloud data point cloud data
sanweidianyunshuju
- 三维点云数据,普通的简单的三维点云数据,可以直观的看到点云数据的结构,适合点云数据的初学者-Three-dimensional point cloud data, ordinary simple three-dimensional point cloud data, you can visually see the point cloud data structure for point cloud data for beginners
bunny2
- pcd点云文件格式,在pcl点云库中实现两个pcd文件的点云配准-pcd point cloud file formats to achieve two pcd file in the library pcl point cloud point cloud registration
Multi-criteria
- 针对具有语言评价信息、准则权系数部分已知的多准则决策问题, 提出一种基于前景理论及云模型的决策 方法. 首先, 通过给出一种改进的云模型生成方法将语言评价值转化为云模型 然后, 通过定义云模型距离和可能度 给出云前景价值, 并以其他备选方案为动态参考点, 构建云前景决策矩阵 最后, 在依据离差最大化得出最优权系数的基础上, 通过各方案综合前景值对其进行排序. 算例验证了所提出方法的合理性和可靠性.-For the risky multi-criteria decision-making
high-order-Newton-type-methods
- 针对具有语言评价信息、准则权系数部分已知的多准则决策问题, 提出一种基于前景理论及云模型的决策 方法. 首先, 通过给出一种改进的云模型生成方法将语言评价值转化为云模型 然后, 通过定义云模型距离和可能度 给出云前景价值, 并以其他备选方案为动态参考点, 构建云前景决策矩阵 最后, 在依据离差最大化得出最优权系数的基础上, 通过各方案综合前景值对其进行排序. 算例验证了所提出方法的合理性和可靠性.-For with linguistic assessment information on
Convex-hull-algorithm
- 凸包算法。寻找最少的点包围点云,可以用来绘制色空间的色域。-Convex hull algorithm. The least points will be founed surround all the point cloud, which coule be used to draw the color gamut for color space.