搜索资源列表
zuizhong1
- HHT算法实现emd分解,及希尔伯特黄变换,实现瞬时频率瞬时幅值,边际谱的提取。-The HHT algorithm emd decomposition and Hilbert-Huang transform to achieve the instantaneous amplitude of the instantaneous frequency marginal spectrum extraction.
115
- 本文针对基于经验模态分解EMD的时空滤波器存在的固有模态函数分量中频率混叠交叉导致有用信号与噪声一起被滤除的问题结合小波在时间尺度两域表征信号局部特征的特性提出了一种基于能量估计实现EMD分解层数确定-In this paper, based on empirical mode decomposition EMD temporal filter mode functions inherent component of cross-frequency aliasing and noise toge
117
- 针对非线性非平稳信号的去噪问题,提出一种基于主成分分析(PCA)的经验模态分解(EMD)消噪方法.该方法根据EMD的分解特性,利用PCA对噪声信号经EMD分解后的内蕴模态函数(IMF)进行去噪处理-For nonlinear and non-stationary signal de-noising is proposed based on principal component analysis (PCA) of the empirical mode decomposition (EMD) de
基于 HHT 的船体结构应力监测数据 特征分析和去噪方法
- [目的]为了去除船体结构应力监测数据中的噪声信号,获得有效的数据信息,以便为后续数据挖掘提 供支撑,[方法]首先,采用 HHT 方法中的经验模态分解(EMD)算法对数据进行成分分析,得到固有模态函数 (IMF)和余项。然后,通过 Hilbert变换得到 Hilbert谱,证明应力监测数据的非平稳特性。最后,以信噪比(SNR) 和均方根误差(RMSE)为例,结合自适应去噪和小波阈值去噪两种方法对应力监测数据进行去噪效果比较。 [结果]结果表明,基于 HHT方法的自适应去噪和小波去噪都具有一定