搜索资源列表
Texture-Segmen-ta-t-ion-withWavelet
- 为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率, 提出了一种基于小波变换的利 用特征加权来进行纹理分割的方法. 该方法包括特征提取、预分割和后分割 3 个阶段, 其中, 特征提取在金字塔结 构小波变换的基础上进行 预分割利用均值聚类算法来对原始图象进行初步的分割 后分割则根据预分割的结果 对特征进行加权, 然后利用最小距离分类器来实现图象的最后分割. 与传统的方法相比, 该方法在分割错误率、边 缘准确性以及区域一致性等方面均有明显的改善-To imp rove t
OMP
- :针对压缩感知算法重建时间长、图像重建质量不高等不足 , 在认真分析压缩感知算法的基础上 , 提 出一 种压缩感知多描述并行算法。为了提 高系统运行速度和重建 图像质量, 将 经过稀疏 变换后 的系数进行 交织抽 取 , 分成多个子图像 , 再利用 Op e nMP将子图像分配到各线程中并行实现分块压缩感知。实验结果表明, 随着抽 取数的增加,图像的重建质量呈上升趋势, 在 3 2抽取时图像的重建质量比单抽取的高出了7. 2 4 dB; 随着线程数 的增加 , 程序的执行效率不断提 高, 最高可