搜索资源列表
-
3下载:
摘要:本文基于Matlab对约瑟夫森结(Josephson Junction)RCSJ模型的交直流I-V特性及非线性混沌现象进行数值模拟。通过计算机数值模拟得到该模型的非线性微分方程数值解,研究了RCSJ模型中各参量对约瑟夫森结的影响,进而简要分析其I-V特性和非线性混沌现象的产生机理,绘制出约瑟夫森结的交直流I-V特性曲线、非线性微分方程的相图及因其高度非线性而引起的通过倍周期分岔和阵发性原理进入混沌状态的分岔图。
关键词:超导器件 隧道效应 约瑟夫森结 弱耦合 倍周期分岔 庞加莱截面 混
-
-
0下载:
这是我收集来的有关语音信号非线性处理方面的小论文,主要有关语音非线性分析、研究、预测编码以及识别方面,希望对大家有帮助!-This is what I gathered the voice signal processing, nonlinear small papers, mainly the voice of nonlinear analysis, research, and to identify aspects of predictive coding, we want to help!
-
-
0下载:
从脑电信号的分析出发,论述了频域分析、时域分析等脑电图分析中常用的信号分析方法和特点,特别介绍了Wigner分布、小波变换和匹配跟踪等时频分析方法、人工神经网络和非线性动力学方法在脑电信号分析和处理中的应用情况。
-From the analysis of eeg, discusses the frequency domain and time domain analysis analysis in the analysis of the commonly used eeg signal a
-
-
0下载:
提出基于核函数主元分析的机械故障诊断方法, 它保留主元分析的优点并具有处理非线性的能力。该方法通过核函数映射将非线性问题转换成高维的线性特征空间, 然后对高维空间中的映射数据作主元分析,提取其非线性特征, 对机械故障模式进行识别。并与主元分析方法进行对比分析, 实验结果表明核函数主元分析法非常有效。-Proposed mechanical fault diagnosis method based on Kernel Principal Component Analysis, it retains
-
-
0下载:
Custom tools for MATLAB supporting analysis and design of nonlinear control
systems are introduced in this paper. The paper demonstrates their use to solve
sample nonlinear control problems and presents some of the MATLAB algorithms
invol
-
-
0下载:
针对非线性非平稳信号的去噪问题,提出一种基于主成分分析(PCA)的经验模态分解(EMD)消噪方法.该方法根据EMD的分解特性,利用PCA对噪声信号经EMD分解后的内蕴模态函数(IMF)进行去噪处理-For nonlinear and non-stationary signal de-noising is proposed based on principal component analysis (PCA) of the empirical mode decomposition (EMD) de
-
-
0下载:
This paper presents a generalized nonlinear (Markov)
analysis technique for evaluation of the statistical
performance of uniformly sampled digital phase-locked
loops (DPLL). Recently proposed synchronization
algorithms use more discrete t
-
-
0下载:
This paper explores nonlinear methods, inspired by the fractal theory for the analysis of the structure of music signals at multiple time scales, which is of importance both for their modeling and for their automatic computer based recognition. The m
-