搜索资源列表
网络硬件加速器在自动驾驶计算平台的作用
- 近几十年来,图形处理器(GPU)已从最初作为大型电玩的视频显示适配器演进为一个强大的计算中心,并且正在推动人工智能和机器学习的发展,包括从石油和天然气勘探到自然语言处理等众多领域的计算工作。如今,GPU正在自动驾驶和先进驾驶辅助系统(ADAS)技术的发展中扮演着越来越重要的作用。
GPU和神经网络加速器芯片如何为汽车应用提供智能优势
- 汽车行业是推动人工智能(AI)发展的重要行业之一,这是因为该行业致力于自动驾驶汽车和高级驾驶员辅助系统(ADAS)的泛在利益。汽车正在变得越来越智能,但是如果汽车行业要实现完全自动驾驶的目标,他们还有很长的路要走。尽管业界还在讨论实现全自动化所需的理想技术组合,但是有一点是明确的,那就是人工智能,尤其是神经网络将发挥重要作用。
GPU可以为汽车ADAS带来什么
- 当今汽车行业最受关注的话题之一是先进的驾驶辅助系统(ADAS),该系统可以多种方式帮助驾驶员处理潜在问题。它们可以为驾驶员提供视觉和听觉警告,也可以控制制动器、加速器和转向装置,使汽车远离危险。
嵌入式芯片要如何应对真正的AI本地化处理的挑战
- GPU和NNA(神经网络加速器)正在迅速成为AI应用的关键要素。随着不同企业开始挖掘神经网络在各种任务(比如自然语言处理、图片分类)中的潜力,集成人工智能元素的产品数量正在稳步的增长。与此同时,对于这些任务的处理也正在从传统的云端架构转移到设备本身上来,嵌入式芯