搜索资源列表
tuxiangjiansuoweilaizhilu
- 随着计算机技术和国际互联网的飞速发展,包括图像在内的各种多媒体数据的数量正以惊人的速度增长,人们很容易在多媒体信息海洋中迷失方向,如何从中有效地检索有用信息是一个很关键和迫切的问题。本文回顾了图像检索技术的发展状况,阐述了基于内容的图像检索的关键技术,结合认知心理学模型和智能科学技术,重点探讨了未来图像检索的发展方向和技术路线。 -with computer technology and the Internet's rapid development, include images o
image_retrieval
- 近两年关于图像检索的重要参考文献,包括IEEE和国内CNKI上发表的顶级期刊-Image Retrieval over the past two years on the importance of references, including the IEEE and domestic CNKI top journals published
ImageRetrieval-IdeasInfluencesandTrendsoftheNewAge
- 该文发表于08年,研究了近十年来约300篇图像检索论文,涉及主要的经典理论、图像标注并讨论了相关子领域。该文还讨论了如何利用现有的图像检索技术构建现实中图像系统,是一篇不可多得的图像检索综述。-The article surveys almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotat
image-retrieval-block
- 基于颜色分块的论文,很不错,值得看的一篇论文 基于分块主颜色匹配的图像检索 中文的-Color block-based papers, very good, worth looking at the paper-based block the main colors match the image retrieval Chinese
Image-Retrievals
- 基于图像内容的多维特征检索技术,主要利用图像的形状特征提取-Retrieval technique based on multi-dimensional characteristics of the image content, the main use of the shape of the image feature extraction
jiyuqinggan
- 基于情感模型的感性图像检索pdf版,电子期刊-The perceptual image retrieval based on emotion model pdf version of electronic journals
fast-image-retrieval
- 基于视觉单词树的快速图像检索,fast iamge retrieval through vocabulary tree.-Based on visual word tree fast image retrieval, fast iamge retrieval through vocabulary tree.
Relevance-Feedback-
- 图像检索相关反馈方面牛人的文章。很有参考价值。-The paper about the relevance feedback of Image retrieval . it is very useful.
Image-segmentation-and-retrieval
- 几篇有关图像分割与检索的文章,采用边缘检测提取形状,采用形状检索,有用-some useful papers of Image segmentation and retrieval
Content-Based-Image-Retrieval
- 是一篇涉及多篇文章的关于图像检索的很好的综述-Is an involving multiple articles a good overview on image retri
tidu
- 视频侦查 目标搜索 以图搜图 视频检索 视频浓缩 视频摘要 图像检测 图像识别 神经网络 目标检测 目标识别 缺陷检测 外观识别 车型识别 车牌识别-Video scout, target search, search images relying on images, video retri , video concentrate, video abstract, image detection, image recognition, neural network, target detect