搜索资源列表
基于贝叶斯网络的半监督聚类集成模型
- 已有的聚类集算法基本上都是非监督聚类集成算法,这样不能利用已知信息,使得聚类集成的准确性、鲁棒性和稳定性降低.把半监督学习和聚类集成结合起来,设计半监督聚类集成模型来克服这些缺点.主要工作包括:第一,设计了基于贝叶斯网络的半监督聚类集成(semi-supervised cluster ensemble,简称SCE)模型,并对模型用变分法进行了推理求解;第二,在此基础上,给出了EM(expectation maximization)框架下的具体算法;第三,从UCI(University of Ca
Cprimerplus第六版答案
- 全书共17章。第1、2章学习C语言编程所需的预备知识。第3到15章介绍了C语言的相关知识,包括数据类型、格式化输入输出、运算符、表达式、流程控制语句、函数、数组和指针、字符串操作、内存管理、位操作等等,知识内容都针对C99标准;另外,第10章强化了对指针的讨论,第12章引入了动态内存分配的概念,这些内容更加适合读者的需求。第16章和第17章讨论了C预处理器和C库函数、高级数据表示(数据结构)方面的内容。附录给出了各章后面复习题、编程练习的答案和丰富的C编程参考资料。
Runge-Kutta法
- 龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。