搜索资源列表
hownarrow
- the paper I uploaded was submitted in my DSP2 class. The paper discusses the results of the simulation based on the paper of Zatman on "How Narrow is Narrowband?" It investigates the second eigenvalue parameter of the received signal that determines
Matrix_Pencil
- 出一种实现不同维间估计结果自动配对的二维频率估计算法。首先把二维频率估计问题转化成两个矩阵束的特征值问题。根据矩阵束的特征求出两个矩阵束的公共特征向量,并以此为基础同时求出两个矩阵束的特征值。算法估计误差与现有算法相近,但解决了现有算法普遍存在的配对难题。 -Matrix pencils play an important role in numerical linear algebra. The problem of finding the eigenvalues of a pencil
fast-subspace-algorithm
- 为了对空间辐射源进行精确定位" 建立了基于任意阵列对多目标源进行二维DOA估计的数学模型。将 MUSIC算法推广到三维空间阵列可以对辐射源进行二维高精度测向,但由于其需要估计接收数据的协方差矩阵和进行特征分解, 因而其计算量较大。利用多级维纳滤波器的前向递推获得信号子空间和噪声子空间,不需要估计协方差矩阵和对其进行特征分解,从而降低了MUSIC算法的计算量。将文中的方法应用于任意阵列的二维DOA估计中进行计算机仿真和实际侧向系统性能验证,实验结果均表明该方法达到了MUSIC算法的性能,但与常规M
pan-fe65
- cordic算法的matlab仿真,三相光伏逆变并网的仿真,AHP层次分析法计算判断矩阵的最大特征值。- cordic matlab simulation algorithm, Three-phase photovoltaic inverter and network simulation, Calculate the maximum eigenvalue judgment matrix of AHP.
dpjqv
- AHP层次分析法计算判断矩阵的最大特征值,一种噪声辅助数据分析方法,对球谐函数图形进行仿真。- Calculate the maximum eigenvalue judgment matrix of AHP, A noise auxiliary data analysis method, Of spherical harmonics graphic simulation.
qie-V3.2
- AHP层次分析法计算判断矩阵的最大特征值,是机器学习的例程,是信号处理的基础。- Calculate the maximum eigenvalue judgment matrix of AHP, Machine learning routines, Is the basis of the signal processing.
mt766
- AHP层次分析法计算判断矩阵的最大特征值,一些自适应信号处理的算法,各种资源分配算法实现。- Calculate the maximum eigenvalue judgment matrix of AHP, Some adaptive signal processing algorithms, Various resource allocation algorithm.
ten_qn81
- AHP层次分析法计算判断矩阵的最大特征值,包括脚本文件和函数文件形式,对信号进行频谱分析及滤波。- Calculate the maximum eigenvalue judgment matrix of AHP, Including scr ipt files and function files in the form, The signal spectral analysis and filtering.
xr537
- esprit算法对有干扰的信号频率进行估计,AHP层次分析法计算判断矩阵的最大特征值,借鉴了主成分分析算法(PCA)。- esprit algorithm signal frequency interference can be assessed Calculate the maximum eigenvalue judgment matrix of AHP, It draws on principal component analysis algorithm (PCA).