搜索资源列表
PCA利用累计方差贡献率确定主元个数的matlab程序
- 主元分析中对主元的个数确定目前没有非常好的办法,这里提供一个比较方便实现的matlab程序
BSS_FastICA_matlab.用于盲信号分离的独立分量分析和主元分量分解
- 用于盲信号分离的独立分量分析和主元分量分解以及独立分量分解的代码,For Blind Signal Separation of independent component analysis and principal component decomposition and independent component decomposition of the code
pca_regression.rar
- 基于主元分析的多元线性回归程序,输出回归系数,主元贡献率和拟合误差,multiple linear regression using pca
20100528KFDA
- 完整的核主元分析法程序,包含训练识别功能,希望有所帮助。-Complete nuclear principal component analysis procedures, including training in recognition, hope that helps
PCA-method-for-fault-diagnosis-routine-five(includ
- 用于故障诊断的PCA方法例程5个(含KPCA),利用PCA(主元分析)方法或者KPCA方法,进行工业系统的故障诊断程序,有详细的注释说明-PCA method for fault diagnosis routine five (including KPCA), using PCA (principal component analysis) method or KPCA method, industrial process fault diagnosis, a detailed explanat
ClusteringToolbox2
- 一个用于聚类的工具箱,内有主元分析、模糊等技术的Matlab源代码和应用实例程序Demo。-One for clustering toolbox, with principal component analysis, fuzzy techniques, such as Matlab source code and application procedures for Demo.
pcatool
- 主元分析法的相关算法,实现主元提取,输入相关 数据即可-PCA analysis of relevant algorithms, to achieve PCA extraction, input the relevant data can be
KPCA_SVM_Train
- 核主元分析和支持向量机结合的故障诊断方法-KPCA and SVM fault diagnosis method combining
PCA_ME
- 简单的主元分析法(PCA)的代码,希望能有帮助-Simple method of principal component analysis (PCA) of the code, hoping to help
Recognition
- 人脸识别是生物特征识别技术中一个非常活跃的课题,取得了很多研究成果。统计主元分析法( Prin2cipal ComponentsAnalysis, PCA)是人脸特征提取和识别的常用方法之一。-Face recognition is an active subject in the area of biometrical recognition technology, and lots of achievements have been obtained. Principal Compone
69491706pca
- 这是一个比较好的基于主元分析PCA的代码,个人觉得很有价值。-This is a good principal component analysis PCA-based code, personally feel very valuable.
PCA
- PCA主元分析的matlab源代码,比较简单-PCA principal component analysis of the matlab source code is relatively simple
PCAjiankong
- PCA监控程序,即主元分析 ( Principal Component Analysis , PCA ),这是用MATLAB编写的PCA监控程序-PCA monitoring program
kpcaprogram
- 核主元分析程序,本人毕业设计程序,用于降维,监测Te过程故障,误诊断率低。-KPCA program, I graduated from the design process for dimension reduction, monitoring Te process failure, error diagnosis rate is low.
PCAxmeas_fault1
- 主元分析方法(PCA)是一种基于多元统计分析的数据降维方法, 它利用过程变量间的相关关系, 建立正常工况下的主元模型, 通过检验新的数据样本相对于主元模型的背离程度, 从而发现异常和故障。 -Principal Component Analysis (PCA) is based on multivariate statistical analysis of the data reduction method, which uses the correlation between process
princinpleAnalysis
- PCA主元分析是用于过程监测中的很好的方法-PCA principal component analysis is used to process monitoring in the good way
myPCA
- 主元分析,主要用于多维数据的降维处理,能够从多维数据中提取出最主要的元素,从线性变换的角度来说就是坐标表换到一个能够体现系统特征的基座标系上-Principal component analysis, multidimensional data is mainly used for dimension reduction process, multi-dimensional data can be extracted from the most important elements, from
基于核函数主元分析的机械故障诊断方法
- 提出基于核函数主元分析的机械故障诊断方法, 它保留主元分析的优点并具有处理非线性的能力。该方法通过核函数映射将非线性问题转换成高维的线性特征空间, 然后对高维空间中的映射数据作主元分析,提取其非线性特征, 对机械故障模式进行识别。并与主元分析方法进行对比分析, 实验结果表明核函数主元分析法非常有效。-Proposed mechanical fault diagnosis method based on Kernel Principal Component Analysis, it retains
主元分析
- 主元分析PCA的讲解PPT,看起来还可以(Principal component analysis PCA explain PPT, looks like you can do it)
142277298PCA
- 这是一个主元分析的matlab程序,希望可以帮助到大家(This is a principal component analysis of the matlab program, I hope to help you all)