搜索资源列表
处理图像分类的最小二乘法svm工具箱
- 这是处理图像分类的最小二乘法svm工具箱,里面有详细的使用说明,功能强大,欢迎下载使用。,This is the deal with image classification of least squares SVM toolbox, which has detailed instructions and powerful are welcome to download.
SVM
- SVM(支持向量机),二分类,多分类,多分类一对一,多分类一对多训练及测试matlab代码-SVM two classes muticlasses mutioneagainstone mutioneagainstall matlab code
hog_svm
- matlab实现hog+svm图像二分类(Matlab implementation of hog and svm images two categories)
程序
- Fisher判别适合于两类的判别分析。本文采用的鸢尾花数据库中鸢尾花类别有三类,所以先采用Fisher判别对数据进行二分类判别分析,然后采用一对一进行多分类。(Fisher discriminant analysis is suitable for two kinds of discriminant analysis. There are three categories of iris in the iris database in this paper, so the Fisher disc
LDAfenlei
- 此程序主要用来对iris数据集进行分类,主要训练二分类器。(This program is mainly used to classify iris data sets)
LBP算法实现图像的纹理分类
- 用LBP(局部二值模式)在MATLAB平台实现纹理分类(Using LBP to achieve texture classification in MATLAB platform)
SVM算法二分类
- 将支持向量机(SVM)用于模式识别,解决二分类问题,程序中包含训练集和测试集。(The support vector machine (SVM) is used for pattern recognition to solve the dichotomy problem, which includes training set and test set.)
BP神经网络多分类部分补充
- 这个是上一个java实现二分类的补充,兼容了二分类和多分类。(a neural network to solve multiclass division which implemented with java)
图片二值化
- 将灰度图片二值化进行识别分类处理,已达到图片识别效果(labview two valuehhhhhhhhh)
nn_classification
- 使用单隐层神经网络进行二分类 使用python语言,先生成一个数据集,无法(但尝试)用logistic回归对数据集进行二分类,最后使用单隐层神经网络对数据集进行分类(classify a dataset with a 3-dimensional hidden layer)
支持向量机算法
- 能够实现二分类的支持向量机matlab程序,例子较为全面
htru2
- 对脉冲星的二分类问题,利用逻辑回归,里面有详细的注解(For the two classification problem of pulsars, there are detailed annotations.)
LDA二分类代码(Matlab实现)
- 基于matlab的LDA算法实现,用于二分类问题(Implementation of LDA algorithm based on MATLAB)
matlab1
- 通过极限学习机对数据进行二分类,亲测有效好使(Two classifications of data by extreme learning machine.)
bayes_analyse
- 基于代价敏感的朴素贝叶斯二分类对于不均衡数据的处理(Cost sensitive naive Bayes two classification for unbalanced data processing)
UCI经典二分类数据集
- UCI经典二分类数据集,可借助R或python进行分析学习(UCI Classic Bicategorized Data Set, which can be analyzed and learned by R or Python)
LSSVM对乘坐高铁的行为预测(LSSVM二分类)
- 本代码是对某人群乘坐高铁行为的预测,其实就是一个典型的二分类问题,用LSSVM工具箱进行建模,最后用ROC曲线来反应分类效果。
SVM
- 利用三次二分类SVM实现三分类SVM,可以用自己的数据,完美运行。(Using the three-category SVM to implement the three-class SVM, you can use your own data to run perfectly.)
SVM 多分类
- 通过一对多,和多对一的方式,将二分类svm转化成多分类分类器(Through the way of one to many and many to one, the two classification SVM is transformed into a multi classification classifier)
SMO 算法实现线性 SVM 分类器,对 iris 数据集进行二分类
- 不使用sklearn库,手写实现SMO算法线性 SVM 分类器,对 iris 数据集进行二分类