搜索资源列表
sidianchafen
- 使用五点差分格式计算一个微分方程在边值问题上的解
5point
- 使用五点差分格式解possion方程的经典案例
del2_5pt.rar
- matlab 源代码,五点差分格式,可以直接运行,用于其他方面,matlab source code, a five-point difference scheme can be run directly for other areas
possion.rar
- 利用1五点差分格式解决的方程为Possion方程,Use of a five-point difference scheme to solve the equation for the Possion equation
peEllip5
- 本程序是用五点差分格式解拉普拉斯方程,采用MATLAB作为开发环境,拉普拉斯方程有广泛的应用,五点差分格式的精度高 -This procedure is a five-point difference scheme for solution of Laplace equation, using MATLAB as a development environment, Laplace equation has a wide range of applications, a five-
20071227103354394
- 关于椭圆问题的五点和九点差分格式,用坐标解决此类问题-Elliptic problem on a five-point and nine-point difference scheme to solve such problems with the coordinates
finitvolummethod
- 有限体积法及其在边值问题中的应用本文介绍了极小位能原理、虚功原理和Ritz-Galerkin方法.主要讨论了椭圆型方程定解问题的有限体积法和双曲型方程定解问题的有限体积法,简要说明了椭圆型方程定解问题的有限体积法的收敛性和近似解误差估计.另外,针对矩形域上一个泊松方程的具体定解问题,导出了它的一种特殊有限体积格式,并且编程实现,计算出该泊松方程定解问题的数值解,将算出的数值解与问题的精确解进行了简单比较,得到了初步的结论.在具体例子中用的是一种特殊的有限体积格式,它可以化为五点差分格式,它比较简
wudianchafengeshi
- 给出了二维泊松方程在单位正方形上的五点差分格式。并运用线性方程组的古典迭代解法——Jacobi迭代求解出在区域上的数值解。最终绘制数值解的图形。-For two at a loose equation in a unit of the square to five o clock. the format and use of linear equations that of classical iterative solution — — jacobi iterative the solutio
Five-pointdifferenceschemewithellipticequationssol
- 用五点差分格式解椭圆型方程,微分方程数值解大作业-Five-point difference scheme with the solution equation, numerical solution of differential equations large operations
ssor
- 数值求解正方形域上的Poisson方程边值问题,用由椭圆型第一边值问题的五点差分格式,用Gauss-Seidel迭代法、块Gauss-seidel迭代法、SSOR迭代法编写求解线性方程组Au=f的算法程序-Numerical Solution of the Poisson equation on a square domain boundary value problem, with the first boundary value problem by the oval five-point
Laplace_jacobi
- Laplace_jacobi 五点差分格式Jacobi迭代法解方程组-Laplace_jacobi five-point difference scheme Jacobi iterative method for solving equations
Five
- 利用五点差分格式计算近似Dirichlet问题,取步长1,试用Jacobi迭代、Guass-Seidel迭代和SOR迭代求解-The five-point difference scheme to calculate the approximate Dirichlet problem, take a step a trial Jacobi iterative the on Guass-Seidel iteration and SOR iterative solution
five-point-difference-scheme
- 椭圆型方程五点差分格式程序,非常简单及使用-Elliptic equations five-point difference scheme program is very simple and use
matlab
- 五点差分格式解重调和问题,采用适当的技巧将其分解成两个Possion方程求解-Five-point difference scheme solution Biharmonic
elliptical_equation
- 采用五点差分格式计算椭圆型方程的近似解,并验证五点格式的收敛速度-The five point differential scheme is used to compute approximate solutions of elliptic equation.
11
- 采用五点差分格式解决椭圆问题,这里是3个详例。-Using a five-point difference scheme to solve elliptic problems, here are three detailed examples.
wudianchafenfa_gaijin
- 用改进的经典的五点差分格式去求解二维椭圆偏微分方程,对学习微分方程数值解十分有帮助-Improved classic five-point difference scheme to solve the two-dimensional elliptic partial differential equations, numerical solution of differential equations to study very helpful
Five-point-difference-scheme
- 利用五点差分格式近似Dirichlet问题,试用雅克比迭代、Gauss-sedel迭代求解。-Use a five-point difference scheme approximation Dirichlet problem, the trial Jacobi iteration, Gauss-sedel iterative solver.
matlab
- 应用五点差分格式解偏微分方程:u = u(x,y). -(u"(x)+u"(y))=(pi^2-1)*e^x*sin(pi*y)(Solving partial differential equations by five point difference scheme)
五点差分型多重网格方法
- 用用五点差分算法结合多重网格算法求解偏微分方程;用五点差分算法结合多重网格算法求解偏微分方程。(Using five-point difference algorithm combined with a multigrid algorithm to solve partial differential equations; Using five-point difference algorithm combined with multigrid algorithm to solve partia