搜索资源列表
face
- 人脸识别技术的几个主要研究方向,计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情
facegotoinstance111qwert
- 人脸识别因其在安全验证系统、信用卡验证、医学、档案管理、视频会 议、人机交互、系统公安(罪犯识别等)等方面的巨大应用前景而越来越成为 当前模式识别和人工智能领域的一个研究热点。 本文提出了基于24位彩色图像对人脸进行识别的方法,介绍的主要内容是图像处理,它在整个软件中占有极其重要的地位,图像处理的好坏直接影响着定位和识别的准确率。本软件主要用到的图像处理技术是:光线补偿、高斯平滑和二值化。在识别前,先对图像进行补光处理,再通过肤色获得可能的脸部区域,最后根据人脸固有眼睛的对称性来确
毕业设计:人脸识别系统设计软件
- 本软件主要用到的图像处理技术是:光线补偿、高斯平滑和二值化。在识别前,先对图像进行补光处理,再通过肤色获得可能的脸部区域,最后根据人脸固有眼睛的对称性来确定是否就是人脸,同时采用高斯平滑来消除图像的噪声,再进行二值化,二值化主要采用局域取阈值方法,接下来就进行定位、提取特征值和识别等操作。经过测试,图像预处理模块对图像的处理达到了较好的效果,提高了定位和识别的正确率。 随软件附上设计文档和参考资料。
DCT
- 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和B
2413
- 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份-Construction of broad recognition, including face recognition system actually a series of related technologies, including facial image capture, face detection, face reco
Face-Recognition
- 人脸识别,人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影到上一步骤中得到的子空间上;选择一定 的距离函数进行识别。-Recognition, face image preprocessing read into the face database, training the formation of the feature sub-space the training images and test images were projected into the su
Face-recognition-method
- 基于PCA 和BP 神经网络的人脸识别方法是针对 PCA 方法中存在的高维数问题和它对未训 练过的样本识别率低的缺点而提出的。该方法在预处理的基础上,利用粗糙集对 PCA 降维处理后的人脸特征进行约简,提取其中分类能力强的特征,实现在识别精度不变的情况下,有效的去除冗余信息;然后将约简后的属性输入到神经网络进行规则提取,利用神经网络非线性映射和并行处理的特点,增强对人脸图像识别的泛化能力。实验证明,使用该方法在识别率上有一定的提高-Face recognition method based
Untitled_1
- 人脸识别算法分类 基于人脸特征点的识别算法(Feature-based recognition algorithms)。 基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。 基于模板的识别算法(Template-based recognition algorithms)。 利用神经网络进行识别的算法(Recognition algorithms using neural network)。 基于光照估计模型理论
PCA(test)
- 完整的PCA 人脸识别的应用包括几个步骤:人脸图像预处理;读入人脸库,训练形成 特征子空间;把训练图像和测试图像投影到上一步骤中得到的子空间上;选择一定 的距离函数进行识别-We present an approach to the detection and identification of human faces and describe a working, near-real-time face recognition system which tracks a s
程序
- PIVlab - 时间分辨粒子图像测速(PIV)工具: 一种基于GUI的工具,用于预处理,分析,验证,后处理,可视化和模拟PIV数据。 使用MATLAB网络研讨会进行人脸识别代码: 使用MATLAB在线讲座的人脸识别中的主要演示文件。 Gabor特征提取: 该程序生成一个自定义Gabor滤波器组; 并使用它们提取图像特征。 主成分分析: 用于特征提取; 链码: 基于MATLAB的freeman的曲面轮廓描述(PIVlab - time resolved particle
faceRecognization
- 本程序中,利用了LBP特征对人脸特征进行提取,并且利用SVM对提取的人脸特征进行训练和识别,其中,所用的图像处理库OpenCV2.4.9版本;通过对人脸库中的标准标本进行测试,算法识别率高达95%以上;(LBP features extract facial features, and use SVM to extract and recognize the facial features. The OpenCV2.4.9 version of the image processing libr
人脸识别程序
- 可以轻松的识别出人脸,可以很好的与背景分离(Can easily identify the face, can be very good to separate from the background)
matlab数字图像处理与识别
- 将理论知识、科学研究和工程实践有机结合起来,内容涉及数字图像处理和识别技术的方方面面,包括图像的点运算、几何变换、空域和频域滤波、小波变换、图像复原、形态学处理、图像分割以及图像特征提取的相关内容;同时对于机器视觉进行了前导性的探究,重点介绍了两种目前在工程技术领域非常流行的分类技术——人工神经网络(ANN)和支持向量机(SVM),并在人脸识别这样的热点问题中结束《精通Matlab数字图像处理与识别》。(Combining theoretical knowledge, scientific re