搜索资源列表
FlexCRFs-0.3
- Hieu Xuan Phan & Minh Le Nguyen 利用CRF统计模型写的可用于英文命名实体识别、英文分词的工具(开放源码)。CRF模型最早由Lafferty提出,全名conditional random fields,该模型后来被广泛地应用在语言和图像处理领域,并随之出现了很多的变体。FlexCRF就是对CRF模型的一个实现应用工具,可用于文本信息处理
abner
- 一个命名实体识别工具,是Mallet开放源码项目的一部分,可用于识别文本中的人名、地名等信息-a named entity recognition tools, Mallet OSS part of the project, Text can be used to identify the names, places and other information
FreeICTCLAS
- 中科院的汉语词法分析系统ICTCLAS,主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典。
ICTCLAS2009.对中文进行分词并对其词性标注
- 对中文进行分词并对其词性标注;命名实体识别;新词识别;同时支持用户词典,To be conducted in Chinese word segmentation and POS tagging Named Entity Recognition new word identification simultaneously support the user dictionary
windowsC32.rar
- 汉语词法分词系统,主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典。,Morphology of Chinese word segmentation systems, the main features include Chinese word segmentation-of-speech tagging named entity recognition new word identification At the same time support the use
ICTCLAS50_Windows_64_C
- 中文词法分析是中文信息处理的基础与关键。中国科学院计算技术研究所在多年研究工作积累的基础上,研制了汉语词法分析系统ICTCLAS(Institute of Computing Technology,Chinese Lexical Analysis System),主要功能包括中文分词;词性标注;命名实体识别;新词识别;同时支持用户词典;支持繁体中文;支持gb2312、GBK、UTF8等多种编码格式。 ICTCLAS分词速度单机500KB/s,分词精度98.45 ,API不超过100kb,各种词典
stanford-ner-2007-11-05
- 斯坦福大学开发的命名实体识别源码,支持英文-Stanford NER- September 2006 ---------------------------------------------- This package provides a high-performance machine learning based named entity recognition system, including facilities to train models from su
mingmingshitishibie
- 这是一个关于命名实体识别的程序,可以识别人名,地名以及机构名称等-This is a study on Named Entity Recognition procedure to identify place names and the names of organizations, such as
lingpipe-3.6.0
- 一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character
CHMM
- 使用层叠隐马模型解决命名实体识别问题,含有训练语料及测试预料。-Implicit use of cascading Ma Named Entity Recognition Model to solve the problem, containing training materials and tests are expected words.
ICTCLASAPIManual
- 中科院中文进行分词并对其词性标注;命名实体识别;新词识别;同时支持用户词典-Chinese Academy of Sciences Chinese word segmentation and POS tagging named entity recognition new word identification At the same time support the user dictionary
Entity_Relation_Extraction
- 说明:目前信息抽取的主要研究方向是命名实体识别、指代消解、实体语义关系抽取、事件探测等几个领域。本资料包含7篇关于关系抽取的相关经典论文。 -Note: At present, the main research direction of information extraction is named entity recognition, anaphora resolution, entity semantic relation extraction, event detection, a
RESEARCH_ON_KEY_TECHNOLOGIES_OF_THE_INFORMATION_EX
- 说明:主要集中在命名实体识别和实体关系抽取两个方面,将先进的机器学习算 法和全新的理论方法一全信息理论运用到我们的整个研究过程中。-Descr iption: The main focus on named entity recognition and entity extraction between the two aspects of advanced machine learning algorithms and new theoretical methods of informat
An_Introduction_to_Conditional_Random_Fields_for_R
- 说明: 基于条件随机场模型的经典理论介绍,广泛应用于命名实体识别,实体关系识别领域。-Note: Based on Conditional Random Fields model describes the classical theory is widely used in named entity recognition, entity-relationship identification field.
ChineseNER-master
- Pyhton实现biLSTM+CRF算法,应用于中文命名实体识别(Pyhton implementation of biLSTM+CRF algorithm, applied to Chinese named entity recognition)
NER-Deep-Learning-master
- 利用LSTM和条件随机场进行命名实体识别(Named entity recognition with LSTM and CRF)
Chinese-Literature-NER-RE-Dataset-master
- #中文命名实体识别,针对中文文档的命名实体识别(# Chinese-Literature-NER-RE-Dataset A Discourse-Level Named Entity Recognition and Relation Extraction Dataset for Chinese Literature Text)
ChineseNER-master
- BiLSTM+CNN结构实现中文命名实体识别(implement Chinese NER with BiLSTM+CNN architecture)
NER-CRF-HMM-master
- HMM以及CRF用于自然语音处理中的命名识别(HMM and CRF for name recognition in natural speech processing)
ResumeNER
- 命名实体识别预料 resume,开箱即用,方便快捷(Named entity recognition is expected to resume, out of the box, convenient and fast)